Depolarization
binds to specific receptors on the postsynaptic cell membrane, leading to changes in the cell's membrane potential. This can either excite or inhibit the postsynaptic neuron, influencing the likelihood of an action potential being generated. Ultimately, the effect of the neurotransmitter can influence the communication between neurons in the nervous system.
the specific type of neurotransmitter, its binding to receptors on the postsynaptic membrane, and the resulting activation or inhibition of postsynaptic neurons. This interaction can lead to changes in membrane potential, triggering action potentials and influencing communication between neurons.
The neuron releases its neurotransmitter into the synaptic cleft at the neuromuscular junction, which is the gap between the neuron terminal and the muscle cell. This neurotransmitter then binds to receptors on the muscle cell membrane, triggering muscle contraction.
Yes, the membrane is permeable to protons.
Yes, the mitochondrial membrane is permeable to protons.
the receptors on the postsynaptic membrane
depolarization
nerve impulse
action potential of the sarcolemma(the membrane)
binds to specific receptors on the postsynaptic cell membrane, leading to changes in the cell's membrane potential. This can either excite or inhibit the postsynaptic neuron, influencing the likelihood of an action potential being generated. Ultimately, the effect of the neurotransmitter can influence the communication between neurons in the nervous system.
The transport mechanism for a neurotransmitter across the synaptic cleft is called exocytosis. During exocytosis, neurotransmitter-filled vesicles fuse with the presynaptic membrane, releasing the neurotransmitter into the synaptic cleft where it can then bind to receptors on the postsynaptic membrane.
the specific type of neurotransmitter, its binding to receptors on the postsynaptic membrane, and the resulting activation or inhibition of postsynaptic neurons. This interaction can lead to changes in membrane potential, triggering action potentials and influencing communication between neurons.
Ionotropic receptors are a type of neurotransmitter receptor that directly gates ion channels when activated, leading to rapid changes in membrane potential. Metabotropic receptors, on the other hand, are G protein-coupled receptors that activate intracellular signaling cascades upon neurotransmitter binding, resulting in slower and longer-lasting cellular responses.
Neurotransmitter receptors are located on the postsynaptic membrane of neurons. When a neurotransmitter binds to its specific receptor, it can either excite or inhibit the postsynaptic neuron, thereby influencing the transmission of signals in the brain.
The neurotransmitter used at the neuromuscular junction is acetylcholine. It is released from the motor neuron terminals and binds to receptors on the muscle cell membrane, leading to muscle contraction.
The neuron releases its neurotransmitter into the synaptic cleft at the neuromuscular junction, which is the gap between the neuron terminal and the muscle cell. This neurotransmitter then binds to receptors on the muscle cell membrane, triggering muscle contraction.
Yes, the membrane is permeable to protons.