Yes, it is true.
The weak force is the force of attraction between atoms.
There are weak forces of attraction between particles in a gas, but these forces are generally much weaker than the kinetic energy of the particles themselves. This is why gases have high mobility and tend to fill the space they are confined to.
They are too weak to have an effect at great distrances between gas particles.
According to the kinetic theory of gases, one assumption is that the forces of attraction between particles can be ignored, particularly under ordinary conditions. However, a key point that is not an assumption of the kinetic theory is that gas particles occupy a significant volume compared to the total volume of the gas, which is incorrect; the theory assumes that gas particles themselves have negligible volume. Additionally, the theory assumes that gas particles are in constant, random motion and collide elastically with one another and the walls of their container.
Yes, it is true.
The weak force is the force of attraction between atoms.
Yes that's right
There are weak forces of attraction between particles in a gas, but these forces are generally much weaker than the kinetic energy of the particles themselves. This is why gases have high mobility and tend to fill the space they are confined to.
Forces of attraction have a stronger effect on the behavior of liquid particles.
They are too weak to have an effect at great distrances between gas particles.
In a gas, the particles are typically moving at high speeds and are far apart, so the forces of attraction between them are negligible. Interactions between gas particles are more controlled by collisions than by attractive forces.
According to the kinetic theory of gases, one assumption is that the forces of attraction between particles can be ignored, particularly under ordinary conditions. However, a key point that is not an assumption of the kinetic theory is that gas particles occupy a significant volume compared to the total volume of the gas, which is incorrect; the theory assumes that gas particles themselves have negligible volume. Additionally, the theory assumes that gas particles are in constant, random motion and collide elastically with one another and the walls of their container.
Scientists can ignore intermolecular forces in a gas under ordinary conditions because gases have weak forces of attraction compared to liquids and solids. The particles in a gas are far apart and move freely, resulting in negligible interaction between individual particles. Hence, the effects of these weak forces are often minimal and can be disregarded for many practical purposes.
liquid.
liquid.
Solids have a strong force of attraction between its particles, which is why they have a fixed shape and volume. Liquids have a weaker force of attraction compared to solids, allowing them to flow and take the shape of their container. Gases have very weak forces of attraction between particles, which is why they can expand to fill the space of their container.