Yes it is possible to write the noble gas configuration of all elements, though it is not possible to list all of them here.
The electron configuration for Hf using noble gas shorthand is [Xe] 6s2 4f14 5d2. The noble gas shorthand represents the electron configuration of the noble gas xenon, which has an electron configuration of 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6.
The noble gas shorthand for titanium is [Ar] 3d^2 4s^2. It represents the electron configuration of titanium by showing the number of electrons in each energy level, similar to the configuration of the noble gas element argon.
The electron configuration for Pb using noble gas shorthand is [Xe] 4f^14 5d^10 6s^2 6p^2.
The election configuration for boron using the noble gas shorthand is [He] 2s^2 2p^1. This shorthand represents the electron configuration of boron by replacing the core electrons with the noble gas that comes before it on the periodic table, which in this case is helium.
In the shorthand method for showing electron configuration, the noble gas preceding the element is used to indicate the core electrons (inner shell electrons), while the valence electrons are indicated by the remaining electron configuration. For example, the electron configuration of potassium (K) can be written as [Ar] 4s¹, where [Ar] represents the noble gas core configuration (argon's electron configuration).
The electron configuration for Hf using noble gas shorthand is [Xe] 6s2 4f14 5d2. The noble gas shorthand represents the electron configuration of the noble gas xenon, which has an electron configuration of 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6.
The ground-state electron configuration for copper (Cu) using noble-gas shorthand is Ar 3d10 4s1.
2.3!<-----wrong shorthand electron configuration for Boron (B on the periodic table) is [He] 2s2 2p1 because Shorthand means building on the last noble gas element. So put the closest Noble gas element before this one and then the new addition.
The noble gas shorthand for titanium is [Ar] 3d^2 4s^2. It represents the electron configuration of titanium by showing the number of electrons in each energy level, similar to the configuration of the noble gas element argon.
The electron configuration for Pb using noble gas shorthand is [Xe] 4f^14 5d^10 6s^2 6p^2.
Only group 18 elements have noble gas configuration. All other elements lack a noble gas electronic configuration.
The shorthand electron configuration of aluminum is [Ne] 3s^2 3p^1, where [Ne] represents the electron configuration of the noble gas neon. This shorthand notation is used to show the core electrons before the valence electrons in the electronic configuration of an element.
The election configuration for boron using the noble gas shorthand is [He] 2s^2 2p^1. This shorthand represents the electron configuration of boron by replacing the core electrons with the noble gas that comes before it on the periodic table, which in this case is helium.
In the shorthand method for showing electron configuration, the noble gas preceding the element is used to indicate the core electrons (inner shell electrons), while the valence electrons are indicated by the remaining electron configuration. For example, the electron configuration of potassium (K) can be written as [Ar] 4s¹, where [Ar] represents the noble gas core configuration (argon's electron configuration).
By acquiring noble gas configuration elements become stable .
The shorthand electron configuration for gold (Au) is [Xe] 4f^14 5d^10 6s^1. This notation represents the electron configuration of gold based on the noble gas before it, xenon.
(Xe)6s24f145d4