Yes because they are both in group 4 on the Periodic Table.
The ground state electron configuration for nitrogen is [He]2s2.2p3.
The electron configuration of gallium is: [Ar]3d104s24p1.
The ground state electron configuration of hydrogen is 1s^1, meaning it has one electron in the 1s orbital. Helium in its ground state has an electron configuration of 1s^2, indicating it has two electrons in the 1s orbital. So, the main difference is that hydrogen has one electron in its outer shell while helium has two electrons in its outer shell.
The electron configuration of lead is [Xe]4f14.5d10.6s2.6p2.
The electron configuration of polonium is [Xe]4f14.5d10.6s2.6p4.
A metalloid in the ground state typically has an electron configuration that exhibits characteristics of both metals and nonmetals. For example, arsenic (a metalloid) has an electron configuration of [Ar] 3d10 4s2 4p3 in its ground state. The varying valence electron shells contribute to the unique properties of metalloids.
The electron configuration of 1s22s22p3s1 is not the ground state electron configuration of any element. This configuration contains 8 electrons, which in the ground state would be oxygen. The ground state configuration of oxygen is 1s22s22p4.
ns^2
The ground state electron configuration for nitrogen is [He]2s2.2p3.
The ground state electron configuration of bromine is Ar 4s 3d 4p.
The ground-state electron configuration for the V3 ion is Ar 3d2.
The ground state electron configuration for iron (Fe) is Ar 3d6 4s2.
The ground state electron configuration of iron (Fe) is Ar 3d6 4s2.
Ground state electron configuration of zinc (Zn): [Ar]3d104s2.
The ground state electron configuration of Lanthanum is [Xe] 5d1 6s2.
This shows 19 electrons, with 4s1 as a valence electron. This is potassium (K).
The ground state electron configuration of iodine is [Kr]5s^2 4d^10 5p^5. The largest principle quantum number in this configuration is 5, corresponding to the outermost energy level where the valence electrons are located.