Sugar. The backbone of the DNA molecule is composed of ribose and phosphate, but the bases which make up the "rungs" of DNA are always connected to the sugar. The phosphate is used to bond the sugars together into long strings.
The rungs of the DNA ladder are composed of alternating deoxyribose sugar molecules and phosphate groups.
The two chemicals that make up the rungs of the DNA ladder are adenine (A) paired with thymine (T), and guanine (G) paired with cytosine (C). These base pairs connect the two strands of the DNA double helix together.
The Sides of this ladder equate to the Dna's Sugar-Phosphate Backbone; the Rungs of this ladder equate to the Hydrogen-bonding that takes place between base pairs.
The backbone of DNA is made up of alternating sugar (deoxyribose) and phosphate molecules. The bases adenine, thymine, guanine, and cytosine are attached to the deoxyribose sugars, forming the rungs of the DNA helix.
An enzyme called HELICASE breaks the sugar to phosphate bonds in DNA strands to initiate DNA replication and DNA transcription.
The rungs of the DNA ladder are composed of alternating deoxyribose sugar molecules and phosphate groups.
In a DNA molecule, the sides are made up of alternating sugar and phosphate groups bonded together. These sugar-phosphate backbones provide structural support to the DNA molecule. The rungs of the DNA ladder are made up of nitrogenous bases that form hydrogen bonds between complementary base pairs.
The two chemicals that make up the rungs of the DNA ladder are adenine (A) paired with thymine (T), and guanine (G) paired with cytosine (C). These base pairs connect the two strands of the DNA double helix together.
The sides of the DNA ladder is composed of sugar and phosphate. 4 bases that make up the rungs of the DNA ladder are A, T, G, and C. The shape of the DNA is a double helix or twisted ladder.
Nucleotides are found along the sugar-phosphate backbone of DNA, which forms the "twisted ladder" structure of the double helix. They are the building blocks of DNA and consist of a sugar, a phosphate group, and a nitrogenous base.
The rungs of the DNA double helix are made up of alternating deoxyribose sugar molecules and phosphate molecules. Please refer to the related link below.
phosphate
The Sides of this ladder equate to the Dna's Sugar-Phosphate Backbone; the Rungs of this ladder equate to the Hydrogen-bonding that takes place between base pairs.
The sugar-phosphate backbone of DNA is made up of alternating sugar (deoxyribose) and phosphate molecules. These molecules form the "rungs" of the DNA ladder, connecting the nitrogenous bases that make up the steps of the ladder.
In a nucleotide the 5-carbon sugar is bonded to the phosphate group, which is bonded to the nitrogenous base. In a chain of nucleotides (a strand of DNA), the nucleotides are connected by covalent bonds between the sugar of one nucleotide, and the phosphate group of the next nucleotide.
The backbone of DNA is made up of alternating sugar (deoxyribose) and phosphate molecules. The bases adenine, thymine, guanine, and cytosine are attached to the deoxyribose sugars, forming the rungs of the DNA helix.
An enzyme called HELICASE breaks the sugar to phosphate bonds in DNA strands to initiate DNA replication and DNA transcription.