It is tRNA
The nucleotide sequence cucaagugcuuc represents a specific mRNA sequence that codes for specific amino acids during protein synthesis. Each set of three nucleotides, called a codon, corresponds to a particular amino acid or a stop signal in the genetic code.
The sequence of nucleotides in DNA specifies the sequence of amino acids in a protein. Each set of three nucleotides, called a codon, corresponds to a specific amino acid or a signal to start or stop protein synthesis.
The peptide sequence after translation would be a chain of amino acids formed based on the mRNA sequence. The order of amino acids in the peptide would be determined by the genetic code, where each three-nucleotide codon specifies a specific amino acid. This process occurs in the ribosome during protein synthesis.
The sequence of DNA that specifies the amino acid sequence is called a gene. Genes are made up of specific sequences of nucleotides, which are the building blocks of DNA. The genetic code dictates how these nucleotides are translated into specific amino acids during protein synthesis.
The terminator in mRNA synthesis is a specific DNA sequence that signals the end of transcription. When the RNA polymerase reaches the terminator sequence, it stops transcribing the mRNA molecule, releasing it from the DNA template.
tRNA
The genetic code refers to the nucleotide triplets of DNA and RNA molecules that carry genetic information. It specifies the correlation between an RNA-nucleotide sequence, as well as an amino-acid sequence.
The nucleotide sequence cucaagugcuuc represents a specific mRNA sequence that codes for specific amino acids during protein synthesis. Each set of three nucleotides, called a codon, corresponds to a particular amino acid or a stop signal in the genetic code.
During protein synthesis, a nucleotide sequence in DNA is transcribed into a messenger RNA (mRNA) sequence. This mRNA sequence is then translated into an amino acid sequence by ribosomes. Each set of three nucleotides in the mRNA, called a codon, corresponds to a specific amino acid. This relationship between nucleotide sequences and amino acid sequences is crucial for the accurate assembly of proteins in the cell.
A three-nucleotide sequence in mRNA that specifies a particular amino acid or polypeptide termination signal; basic unit of the genetic code. In translation, an mRNA codon is recognized by its complementary tRNA anti-codon.
The sequence of nucleotides in DNA specifies the sequence of amino acids in a protein. Each set of three nucleotides, called a codon, corresponds to a specific amino acid or a signal to start or stop protein synthesis.
The peptide sequence after translation would be a chain of amino acids formed based on the mRNA sequence. The order of amino acids in the peptide would be determined by the genetic code, where each three-nucleotide codon specifies a specific amino acid. This process occurs in the ribosome during protein synthesis.
RNA uses uracil instead of thymine in its nucleotide sequence because uracil is more stable and efficient for the rapid synthesis of proteins during protein synthesis. Thymine is typically found in DNA, while uracil is specific to RNA.
no its messenger RNA or mRNA
The sequence of DNA that specifies the amino acid sequence is called a gene. Genes are made up of specific sequences of nucleotides, which are the building blocks of DNA. The genetic code dictates how these nucleotides are translated into specific amino acids during protein synthesis.
The terminator in mRNA synthesis is a specific DNA sequence that signals the end of transcription. When the RNA polymerase reaches the terminator sequence, it stops transcribing the mRNA molecule, releasing it from the DNA template.
A substitution mutation is a type of genetic mutation where one nucleotide in the DNA sequence is replaced with a different nucleotide. This can lead to changes in the amino acid sequence during protein synthesis, potentially altering the function of the protein. The impact of a substitution mutation on the genetic code depends on where it occurs and what specific nucleotide is substituted.