They are donated to the electron transport system
To oxidize the intermediate products of glycolysis and the citric acid cycle and then, in reduced state, take their electrons and hydrogens to the systems of the electron transport chain where ATP production is the ultimate result.NAD + --> NADHFAD + --> FADH2
Most energy that enters the electron transport chain comes from the oxidation of glucose during glycolysis and the citric acid cycle. This energy is then transferred to the electron carriers NADH and FADH2, which deliver the electrons to the electron transport chain to generate ATP through oxidative phosphorylation.
Aerobic respiration is the process by which cells convert glucose and oxygen into energy, carbon dioxide, and water. It involves three main stages: glycolysis, the Krebs cycle, and the electron transport chain. In glycolysis, glucose is broken down into pyruvate, which is then processed in the Krebs cycle to produce electron carriers. Finally, these carriers transfer electrons to the electron transport chain, where ATP is generated through oxidative phosphorylation.
NADH and FADH2 are the molecules that carry high-energy electrons into the electron transport chain. These molecules are produced during glycolysis and the citric acid cycle and donate their electrons to the chain to generate ATP through oxidative phosphorylation.
FADH2 and NADH are classified as electron carriers in cellular respiration. They play a key role in transferring electrons to the electron transport chain, where the energy from these electrons is used to generate ATP through oxidative phosphorylation.
The answer is NADH and FADH2. Both of these are electron carriers.
Molecules that donate electrons to the electron transport chain include NADH and FADH2, which are produced during glycolysis and the citric acid cycle. These molecules transfer their electrons to protein complexes in the electron transport chain, ultimately leading to the production of ATP through oxidative phosphorylation.
To oxidize the intermediate products of glycolysis and the citric acid cycle and then, in reduced state, take their electrons and hydrogens to the systems of the electron transport chain where ATP production is the ultimate result.NAD + --> NADHFAD + --> FADH2
Most energy that enters the electron transport chain comes from the oxidation of glucose during glycolysis and the citric acid cycle. This energy is then transferred to the electron carriers NADH and FADH2, which deliver the electrons to the electron transport chain to generate ATP through oxidative phosphorylation.
in this step the energy carried by electrons is used to synthesize (ATP). In electron transport chain NADH and FADH2 realese electrons and hydrogen ions. These electrons are taken up by a series of electron carriers. When electrons move through the series of electron carriers they lose electrons and hydrogen ions combine with moleculaer oxygen to form water.
NADH and FADH2 are the molecules that carry high-energy electrons into the electron transport chain. These molecules are produced during glycolysis and the citric acid cycle and donate their electrons to the chain to generate ATP through oxidative phosphorylation.
Electrons are brought to the electron transport chain by high-energy electron carriers such as NADH and FADH2. These carriers donate electrons to the chain, which is then used to generate ATP through oxidative phosphorylation.
In the presence of oxygen, glycolysis breaks down glucose to produce pyruvate which then enters the Krebs cycle. In the Krebs cycle, pyruvate is further broken down to produce ATP, NADH, and FADH2. These electron carriers then enter the electron transport chain where they donate electrons to generate more ATP through oxidative phosphorylation.
FADH2 and NADH are classified as electron carriers in cellular respiration. They play a key role in transferring electrons to the electron transport chain, where the energy from these electrons is used to generate ATP through oxidative phosphorylation.
The purpose of electron carriers such as NADH and FADH2 is to dump electrons at the electron transport chain. This creates a proton gradient and allows oxidative phosphorylation to take place.
Actually there are 4 steps of aerobic cellular respiration Glycolysis, Oxidative decarboxylation of pyruvate, kreb's cycle, electrton transport chain
The main electron carriers of the Krebs cycle are NAD+ (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide). These molecules accept electrons and transport them to the electron transport chain for ATP production.