mRNA is synthesized from DNA through a process called transcription, where the DNA sequence of a gene is copied into an mRNA molecule. In certain cases, such as in retroviruses, the enzyme reverse transcriptase converts mRNA back into DNA. This newly formed DNA can then integrate into the host's genome, allowing for the expression of the original mRNA sequence. However, in normal cellular processes, mRNA is typically translated into proteins rather than being converted back to DNA.
The mRNA base sequence corresponding to the DNA sequence acgtt is ugcaa. The mRNA sequence is complementary to the DNA sequence, with thymine (T) in DNA being replaced by uracil (U) in mRNA.
In DNA, adenine pairs with thymine, and cytosine pairs with guanine. When DNA is transcribed into mRNA, adenine in DNA pairs with uracil in mRNA, and cytosine in DNA pairs with guanine in mRNA. This complementary base pairing ensures accurate transfer of genetic information during transcription.
The process of reading DNA to make mRNA is called transcription. During transcription, the DNA sequence is copied into mRNA for protein synthesis.
In the base pairing between mRNA and DNA, the mRNA base adenine (A) pairs with the DNA base thymine (T). Conversely, uracil (U) in mRNA pairs with adenine (A) in DNA, as uracil replaces thymine in RNA. Cytosine (C) pairs with guanine (G) in both DNA and mRNA, and guanine (G) pairs with cytosine (C).
DNA is not made into mRNA, it is transcribed by mRNA. The DNA molecule is split into two strands by the enzyme helicase. One strand is the sense strand and the other is the anti-sense strand. Then mRNA nucleotides pair with their complimentary DNA bases on the antisense strand. The enzyme RNA polymerase causes the mRNA nucleotides to bond with one another, forming a strand of mRNA.
The mRNA comes into the DNA when the DNA unzips. Then the mRNA attaches to one side of the DNA, copies it down, and leaves. Remember, AT CG
The mRNA sequence generated from the DNA strand tgacgca would be acugcgu. This is because mRNA is complementary to the DNA template strand, so DNA base T pairs with mRNA base A, DNA base G pairs with mRNA base C, DNA base A pairs with mRNA base U, and DNA base C pairs with mRNA base G.
DNA to mRNA is transcription, whereas mRNA to tRNA is translation. The latter part is when proteins are made from ribosomes and instructions carried over by mRNA from the DNA.
DNA -> transcription -> pre-mRNA -> mRNA processing -> mRNA -> translation -> protein
Reverse transcriptase use mRNA to form DNA. mRNA
The mRNA base sequence corresponding to the DNA sequence acgtt is ugcaa. The mRNA sequence is complementary to the DNA sequence, with thymine (T) in DNA being replaced by uracil (U) in mRNA.
The bases of mRNA coded for by a DNA segment are complementary to the original DNA sequence. If the DNA sequences are ATCG, the corresponding mRNA bases will be UAGC.
Instructions from DNA are carried to ribosomes by molecules of amino acids. These are carried by tRNA while mRNA carries information from the genes to ribosomes.
In DNA, adenine pairs with thymine, and cytosine pairs with guanine. When DNA is transcribed into mRNA, adenine in DNA pairs with uracil in mRNA, and cytosine in DNA pairs with guanine in mRNA. This complementary base pairing ensures accurate transfer of genetic information during transcription.
A (adenine) goes with U (uracil) in RNA.
The mRNA carries the genetic code needed to make a protein to the ribosome from DNA via microtubules.
The process of reading DNA to make mRNA is called transcription. During transcription, the DNA sequence is copied into mRNA for protein synthesis.