The difference in energy between the energy levels determines color of light emitted when an electron moves from one energy level to another.
Niels Bohr used Planck's idea of quantization to propose his model of the atom, which successfully explained the line spectrum of hydrogen. Bohr suggested that electrons orbit the nucleus in quantized energy levels, emitting or absorbing photons of specific energies when transitioning between these levels, which correspond to the observed spectral lines.
The hydrogen line emission spectrum was discovered by physicists Johann Balmer, Johannes Rydberg, and Niels Bohr. They observed that hydrogen gas emitted specific wavelengths of light, which formed a distinct spectrum now known as the Balmer series.
hydrogen for my A+ peeps ;)follow my insta @braezybreemy snap @young_breee22
The mathematical equation that allows one to calculate the wavelengths of each line in the hydrogen emission spectrum was discovered by Danish physicist Niels Bohr in 1913 as part of his model of the hydrogen atom. This equation is known as the Balmer equation and helped to explain the spectral lines observed in hydrogen emission spectra.
Sunlight produced spectrum is continuous and contains a broad range of wavelengths, while hydrogen gas produced spectrum consists of discrete lines at specific wavelengths due to the unique energy levels of hydrogen atoms. Sunlight spectrum is continuous due to the various processes that produce light, whereas hydrogen gas spectrum is a result of the energy levels of hydrogen atoms emitting photons of specific wavelengths.
he failed to explain line spectrum of elements except hydrogen.
Niels Bohr studied the emission lines of Hydrogen.
Niels Bohr used Planck's idea of quantization to propose his model of the atom, which successfully explained the line spectrum of hydrogen. Bohr suggested that electrons orbit the nucleus in quantized energy levels, emitting or absorbing photons of specific energies when transitioning between these levels, which correspond to the observed spectral lines.
The hydrogen line emission spectrum was discovered by physicists Johann Balmer, Johannes Rydberg, and Niels Bohr. They observed that hydrogen gas emitted specific wavelengths of light, which formed a distinct spectrum now known as the Balmer series.
The Bohr model of the atom helped to explain the quantization of electron energy levels, the stability of atoms, and the line spectrum observed in hydrogen. It proposed that electrons orbit the nucleus at specific energy levels, or shells, rather than in continuous orbits.
the line spectrum of the hydrogen spectrum indicates that only certain energies are allowed for the electron of the hydrogen atom. In other words, the energy of the electron in the hydrogen atom is quantized.
hydrogen for my A+ peeps ;)follow my insta @braezybreemy snap @young_breee22
The mathematical equation that allows one to calculate the wavelengths of each line in the hydrogen emission spectrum was discovered by Danish physicist Niels Bohr in 1913 as part of his model of the hydrogen atom. This equation is known as the Balmer equation and helped to explain the spectral lines observed in hydrogen emission spectra.
The Bohr model
Yes there will be. This is because when you take line spectrum of water vapor, then hydrogen and oxygen atoms will form their own line spectra and the final spectrum will be a combination of the two.
Sunlight produced spectrum is continuous and contains a broad range of wavelengths, while hydrogen gas produced spectrum consists of discrete lines at specific wavelengths due to the unique energy levels of hydrogen atoms. Sunlight spectrum is continuous due to the various processes that produce light, whereas hydrogen gas spectrum is a result of the energy levels of hydrogen atoms emitting photons of specific wavelengths.
The ratio of the first line of the Lyman series to the first line of the Balmer series in the hydrogen spectrum is 1:5.