To find water by mass in a compound, you can calculate the difference in mass before and after heating the compound to drive off the water. The lost mass represents the mass of water present in the compound. You can then calculate the percentage of water in the compound by dividing the mass of water by the total mass of the compound and multiplying by 100.
To find the theoretical percent of water in a compound, you need to determine the molar mass of the compound and the molar mass of water. Then, divide the molar mass of water by the molar mass of the compound and multiply by 100 to get the percentage.
The molar mass of a compound is the sum of atomic weights of elements in the molecule.
To find the gram molecular mass of the compound, you can use the formula: mass = moles × gram molecular mass. Given that 5 moles of the compound have a mass of 100 grams, you can rearrange the formula to find the gram molecular mass: gram molecular mass = mass / moles. Thus, gram molecular mass = 100 grams / 5 moles = 20 grams per mole.
To find the number of particles in a compound when given the mass, first calculate the number of moles using the provided mass and the molar mass of the compound. Then, use Avogadro's number (6.022 x 10^23 particles/mol) to convert the moles to the number of particles in the compound.
how would you find the mass of 250 mL of water
To find the theoretical percent of water in a compound, you need to determine the molar mass of the compound and the molar mass of water. Then, divide the molar mass of water by the molar mass of the compound and multiply by 100 to get the percentage.
To find the molar mass of the nonelectrolyte compound, we need to use the formula: Molar mass (mass of compound / moles of compound) First, we need to find the moles of the compound by using the formula: moles mass / molar mass Given that the mass of the compound is 4.305 g and it is dissolved in 105 g of water, we can calculate the moles of the compound. Next, we can find the molar mass of the compound by rearranging the formula: Molar mass mass / moles By plugging in the values, we can calculate the molar mass of the nonelectrolyte compound.
The compound Ba(OH)2·8H2O has 8 water molecules associated with it. To find the percentage of water in the compound, calculate the molar mass of the water molecules (8H2O) and the molar mass of the entire compound (Ba(OH)2·8H2O). Then divide the molar mass of the water by the molar mass of the entire compound and multiply by 100 to get the percentage of water.
To find the percent of oxygen by mass in a compound, you need to know the molar mass of the compound and the molar mass of oxygen. Divide the molar mass of oxygen by the molar mass of the compound and multiply by 100 to get the percentage.
To find the mass of an element in a compound, you can use the formula: mass of element (mass of compound) x (percent composition of element in compound). This formula helps you calculate the mass of a specific element within a compound based on its percentage composition.
To find the percent by mass of a compound in a given sample, you need to divide the mass of the compound by the total mass of the sample and then multiply by 100. This will give you the percentage of the compound in the sample.
To find the mass of an element in a chemical compound, you can use the atomic mass of the element from the periodic table and the number of atoms of that element in the compound. Multiply the atomic mass by the number of atoms, and you will get the mass of that element in the compound.
To calculate the molar mass, first find the molality of the solution using the boiling point elevation formula. Next, determine the moles of the compound by multiplying the molality by the mass of water in kg. Finally, divide the mass of the compound by the moles to get the molar mass.
Weight of hydrated substance - weight of same material after desiccation.
The molar mass of a compound is the sum of atomic weights of elements in the molecule.
To find the mass percentages of magnesium phosphate and water, you need to know their molecular weights. Then, calculate the total mass of the reactants by adding the masses of magnesium hydroxide and phosphoric acid. Compare this total mass to the sum of the masses of magnesium phosphate and water to find the mass percentages of each compound.
No, it does not violate the law of conservation of mass. The reason for this is that the decrease in mass of the compound can be found in the mass of the water that was lost upon heating. Thus, total mass remains constant.