The atomic number increases but the atomic mass stays the same after the emission of a beta particle by a radioactive atom.
There is no change in atomic number with the emission of gamma radiation. Unlike alpha or beta radiation, it does not have any kind of particles. It's emission results only when an excited nuclei goes to an unexcited state by emitting these.
The atomic number decreases by one for each beta particle
When bismuth-213 emits an alpha particle, it transforms into thallium-209. This process is known as alpha decay, where the atomic number decreases by 2 and the mass number decreases by 4 due to the emission of an alpha particle.
The daughter nucleus in beta emission differs from the parent by having one more proton and one less neutron. This change results in the transformation of a neutron within the nucleus into a proton, accompanied by the emission of an electron (beta particle) and an antineutrino.
Protons
The atomic number increases but the atomic mass stays the same after the emission of a beta particle by a radioactive atom.
There is no change in atomic number with the emission of gamma radiation. Unlike alpha or beta radiation, it does not have any kind of particles. It's emission results only when an excited nuclei goes to an unexcited state by emitting these.
The atomic number decreases by one for each beta particle
When bismuth-213 emits an alpha particle, it transforms into thallium-209. This process is known as alpha decay, where the atomic number decreases by 2 and the mass number decreases by 4 due to the emission of an alpha particle.
The mass number decrease with 4.
The daughter nucleus in beta emission differs from the parent by having one more proton and one less neutron. This change results in the transformation of a neutron within the nucleus into a proton, accompanied by the emission of an electron (beta particle) and an antineutrino.
The atomic number will decrease by 2, the number of protons in the emitted alpha particle. An alpha particle is a helium-4 nuclei with two protons and two neutrons.
Neutron emission from a nucleus can change the atomic mass of an element without affecting its atomic number. This can result in the formation of a different isotope of the element. Neutron emission can also make the nucleus more stable by reducing the neutron-to-proton ratio.
The change in mass number from 211 to 207 after a decay is due to the emission of an alpha particle, which consists of two protons and two neutrons. When an alpha particle is emitted during radioactive decay, the mass number decreases by 4 and the atomic number decreases by 2.
With the ejection of a beta particle (electron), there is a minute loss of mass. Electrons have very low mass. The atomic number increases though as a neutron is transformed into a proton. A antineutrino is also ejected. In a similar process, positron emission also called beta decay,- a positron is emitted and a proton is transformed into a neutron, the atomic number decreases. A neutrino is also ejected.
The sub-atomic particles does not change is electron. Electron not remains negatively charged but its mass remains the same too.