answersLogoWhite

0

What else can I help you with?

Continue Learning about Natural Sciences

What is the difference between DNA polymerase I II and III?

DNA polymerase I, II, and III are enzymes involved in DNA replication in prokaryotes. DNA polymerase I is responsible for removing RNA primers during DNA replication and filling the gaps with DNA nucleotides. DNA polymerase II is involved in DNA repair pathways, particularly in response to DNA damage. DNA polymerase III is the main enzyme responsible for synthesizing a new DNA strand during replication. It has a high processivity and is the primary enzyme involved in synthesizing the leading and lagging strands of DNA.


What is the DNA pol III?

DNA polymerase III (DNA pol III) is a key enzyme in prokaryotic DNA replication, primarily found in bacteria. It is responsible for synthesizing new DNA strands by adding nucleotides to a growing DNA chain, using the existing template strand as a guide. DNA pol III has high processivity and proofreading capabilities, ensuring accurate and efficient DNA replication. This enzyme operates as part of a larger replication complex, which includes other proteins that help coordinate the replication process.


What are the elements of DNA polymerase?

DNA polymerase III (not DNA polymerase) is an enzyme that works in association with other enzymes during the replication of a DNA molecule. DNA replication begins when the enzyme, known as helicase unwinds a DNA strand. Helicase unwinds a DNA strand, thus, in the process, separating the two DNA templates. The result of the unwinding of the DNA molecule is the formation of a replication bubble. Once a DNA molecule is unwound, it is not stable. The DNA molecule is untwisted, broken and rearranged by an enzyme called topoisomerase in order to create stability at the ends of a replication bubble. In addition, the DNA replication bubble is further stabilized by a group of protein complexes known as single strand binding proteins.Once the DNA molecule is unwound and stabilized, an enzyme called primase assembles an RNA sequence that is complementary to the adjacent DNA template. The purpose of this initial RNA sequence is to provide a point at which DNA polymerase III can start to add nucleotides to the corresponding DNA template. Unlike RNA polymerase, DNA polymerase III requires an RNA sequence, which is known as a primer. DNA polymerase III can attach a nucleotide only to the 3 prime end of an existing nucleotide sequence. Once a primer is assembled by primase, DNA polymerase III begins its work of adding nucleotides to the 3 prime end of the primer.It is important to note that replication proceeds in two directions, since a DNA replication bubble consists of two DNA templates. Since DNA polymerase III proceeds in the three prime to 5 prime direction at one DNA template, it also has to proceed in the 3 prime to 5 prime direction on the other DNA template. Since the template run in opposite directions, the second template will consist of multiple primers and thus short segments of DNA. These short segments of DNA are known as Okazaki fragments. The Okazaki fragments are created by DNA polymerase three since it is only able to proceed in the 3 prime to 5 prime direction.After DNA polymerase III completes its work, DNA polymerase I begins to replace the RNA nucleotides of the primers with DNA nucleotides. Once DNA polymerase I replaces the RNA nucleotides with DNA nucleotides, DNA ligase joins the Okazaki fragments together and the result is a new DNA template.


What chemical is an enzyme that add nucleotides to a new strand of DNA during replication?

DNA Polymerase is the enzyme which adds new nucleotides during replication.


What are the 2 enzymes involved in duplicating DNA?

More than two enzymes are involved, but the main ones are DNA Polymerases (Pol III and Pol I in Prokaryotes, Pol α, Pol δ and Pol ε in Eukaryotes).In vitro you can achieve replication with only taq polymerase and two primers.

Related Questions

What is the difference between DNA polymerase III and DNA polymerase I?

pol 1 - exonuclease activity pol 2 - dna repair pol 3 - primary replication enzyme


What are enzymes that have a proofreading role in DNA replication?

DNA polymerases, such as DNA polymerase III in prokaryotes and DNA polymerase delta in eukaryotes, have proofreading activities during DNA replication. These enzymes possess exonuclease activity, allowing them to detect and correct errors in newly synthesized DNA strands by removing misincorporated nucleotides. This proofreading function helps maintain the fidelity of DNA replication.


What is the difference between DNA polymerase I II and III?

DNA polymerase I, II, and III are enzymes involved in DNA replication in prokaryotes. DNA polymerase I is responsible for removing RNA primers during DNA replication and filling the gaps with DNA nucleotides. DNA polymerase II is involved in DNA repair pathways, particularly in response to DNA damage. DNA polymerase III is the main enzyme responsible for synthesizing a new DNA strand during replication. It has a high processivity and is the primary enzyme involved in synthesizing the leading and lagging strands of DNA.


Does the Canon 5D Mark III have WiFi capability?

Yes, the Canon 5D Mark III does not have built-in WiFi capability.


What specific component does DNA polymerase III require in order to function correctly?

DNA polymerase III requires a primer, which is a short piece of RNA or DNA, in order to function correctly.


What is the name of the two enzymes that help in the duplication of DNA?

More than two enzymes are involved. However, the main ones are DNA Polymerase I and DNA Polymerase III. DNA Polymerase III adds new nucleotides and DNA Polymerase I removes primers.


What are the elements of DNA polymerase?

DNA polymerase III (not DNA polymerase) is an enzyme that works in association with other enzymes during the replication of a DNA molecule. DNA replication begins when the enzyme, known as helicase unwinds a DNA strand. Helicase unwinds a DNA strand, thus, in the process, separating the two DNA templates. The result of the unwinding of the DNA molecule is the formation of a replication bubble. Once a DNA molecule is unwound, it is not stable. The DNA molecule is untwisted, broken and rearranged by an enzyme called topoisomerase in order to create stability at the ends of a replication bubble. In addition, the DNA replication bubble is further stabilized by a group of protein complexes known as single strand binding proteins.Once the DNA molecule is unwound and stabilized, an enzyme called primase assembles an RNA sequence that is complementary to the adjacent DNA template. The purpose of this initial RNA sequence is to provide a point at which DNA polymerase III can start to add nucleotides to the corresponding DNA template. Unlike RNA polymerase, DNA polymerase III requires an RNA sequence, which is known as a primer. DNA polymerase III can attach a nucleotide only to the 3 prime end of an existing nucleotide sequence. Once a primer is assembled by primase, DNA polymerase III begins its work of adding nucleotides to the 3 prime end of the primer.It is important to note that replication proceeds in two directions, since a DNA replication bubble consists of two DNA templates. Since DNA polymerase III proceeds in the three prime to 5 prime direction at one DNA template, it also has to proceed in the 3 prime to 5 prime direction on the other DNA template. Since the template run in opposite directions, the second template will consist of multiple primers and thus short segments of DNA. These short segments of DNA are known as Okazaki fragments. The Okazaki fragments are created by DNA polymerase three since it is only able to proceed in the 3 prime to 5 prime direction.After DNA polymerase III completes its work, DNA polymerase I begins to replace the RNA nucleotides of the primers with DNA nucleotides. Once DNA polymerase I replaces the RNA nucleotides with DNA nucleotides, DNA ligase joins the Okazaki fragments together and the result is a new DNA template.


How do Ivan the IV and the III differ?

Ivan III is the son of Ivan the VI. ((go to Wikipedia.com for more information))


How did george III's ideas about government differ from those of his ministers?

George III wanted Parliament to have less power. George III wanted more monarchical power.


How does DNA polymerase III add nucleotides during the process of DNA replication?

DNA polymerase III adds nucleotides during DNA replication by attaching them to the growing DNA strand in a specific order that matches the complementary bases on the template strand. This enzyme catalyzes the formation of phosphodiester bonds between the nucleotides, creating a new strand of DNA that is identical to the original template strand.


What chemical is an enzyme that add nucleotides to a new strand of DNA during replication?

DNA Polymerase is the enzyme which adds new nucleotides during replication.


Which is the main enzyme used for the replication of DNA in ecoli?

The main enzyme used for the replication of DNA in E. coli is DNA polymerase III. It is a highly processive enzyme that synthesizes new DNA strands by adding nucleotides in a 5' to 3' direction. DNA polymerase III works alongside other enzymes and proteins in the replisome complex to accurately copy the entire genome during DNA replication.