answersLogoWhite

0

The voltmeter has an internal resistance, which should be as high as possible. As this resistance draws current from the circuit under test, it will affect circuit operation. This is more pronounced in a high impedance circuit because the current drawn flows through higher resistances.

User Avatar

Wiki User

8y ago

What else can I help you with?

Related Questions

How can an ammeter loading effect the circuit under test?

Since internal resistance of the ameter will increases the resistance of the circuit. Thus decreasing the current giving an errorenous reading.


What is a description of the loading effect of an ammeter?

loading of an ammeter in a circuit decreases the flow of current,so it has to be calculated to reduce expected errors in the operations


How can you measure internal resistance of car battery?

You measure it indirectly using a known load resistance and measuring supplied current. Loading of the ammeter should be known as well, and the load resistance should be made relatively small to get accurate results.


Which ammeter DMM or VOM has the higher loading effect Why?

A digital multimeter (DMM) typically has a lower loading effect compared to a volt-ohm meter (VOM), particularly older analog models. The loading effect refers to the impact a measuring device has on the circuit being measured; a higher loading effect can alter the circuit's behavior. DMMs generally have higher input impedance, which minimizes the current drawn from the circuit, resulting in less loading. In contrast, VOMs, especially those with lower impedance, can significantly affect circuit performance when measuring current.


What will happen if the voltmeter was inserted in place of an ammeter?

You would load the circuit, and it is likely it would not operate correctly. A volt meter is designed to have a very high resistance between the two probes; an ammeter is designed to have a very low resistance. For instance, say you have a 120 watt light bulb that runs on 120 volts (you would then draw ~1 amp of current). If you tried to measure this with a meter that has .1 ohm resistance on ammeter setting, and 1,000,000 ohms on volt meter: Error due to loading: ammeter: .1 / (120 + .1) = .08%; Current will be .999Amps, power to the light bulb will be 119.9 watts Volt meter: 1,000,000/ (120 + 1,000,000) = 99.9%; current will be 120micro Amps, power to the light bulb will be 14.4 milliwatts (the light bulb will not appear to be on).


What is loading affect of multimeter?

'Loading effect' applies to voltmeters, or to multimeters when set to measure voltage. It describes the change in a circuit's resistance when the resistance of the voltmeter is taken into account. It's effect is to cause the resulting measuredvoltage to be different from the actual voltage which would appear without the voltmeter connected. The loading effect is minimised by ensuring that the internal resistance of the voltmeter is significantly higher than the resistance of that part of the circuit to which it is connected. For general voltage measurement, this is usually the case anyway, but when measuring circuits which, themselves, have very high resistance care must be taken over the choice of voltmeter to be used.


How does the loading effect of a voltmeter in a high-rsistance circuit compare to the loading effect in a low-resistance circult?

The voltmeter has an internal resistance, which should be as high as possible. As this resistance draws current from the circuit under test, it will affect circuit operation. This is more pronounced in a high impedance circuit because the current drawn flows through higher resistances.


Why a circuit will produce a loading effect?

This happens because the total parallel resistance is lower than the individual resistors that make up the group of parallel resistors. When you add another parallel load, the resistance of that parallel group lowers and as result increases the current for the rest of the circuit.


What is the difference between a voltage divider circuit and voltage regulator I was told if the circuit consumes low current then the voltage divider can be used what does that mean?

A: that is true for less current a divider is OK it has to do with the series resistance and loading if the loading is forever fixed and the source is also fixed at a value then a divider can be used no matter what the current is.


Loading effect due to shunt connected instruments and series connected instruments?

Loading effect refers to the impact that measuring instruments have on the circuit they are connected to. For shunt-connected instruments, this effect is minimized because they are designed to draw a small amount of current, allowing the majority of the circuit's current to pass through without significant alteration. In contrast, series-connected instruments can introduce a higher resistance into the circuit, potentially altering the current flow and affecting the accuracy of the measurement. Thus, shunt configurations typically have less loading effect compared to series configurations.


What is the ideal voltmeter high or low?

Ideal Voltmeter has an infinite resistance so it won't draw current from the circuit, but in real life ideal voltmeter doesn't exist.


What is the maximum volt-ampere loading permitted on a 20-ampere branch circuit with a continuos load is?

The wattage of the circuit presuming that the circuit voltage is 120 volts. 20 x 120 = 2400 watts. Circuit loading on a continuous load is 80% so 2400 watts x .8 = 1920 watts