The favorability or spontaneity of a reaction increases when the overall entropy of the system increases, or when the free energy of the system decreases. This can happen when reactants are in a more disordered state, when the system achieves greater stability, or when the reaction releases heat.
A high temperature will make it spontaneous.
Entropy increases. In a reaction comprised of sub-reactions, some sub-reactions may show a decrease in entropy but the entire reaction will show an increase of entropy. As an example, the formation of sugar molecules by living organisms is a process that shows decrease in entropy at the expense of the loss of entropy by the sun.
At high temperature the entropy increase.
The entropy increase in this reaction.
A high temperature will make it spontaneous.
The entropy increases in this reaction, as the solid reactant (I2(s)) is becoming a gas (I2(g)), which represents a higher degree of disorder and randomness on a molecular level. The increased entropy contributes to the spontaneity of the reaction.
The favorability or spontaneity of a reaction increases when the overall entropy of the system increases, or when the free energy of the system decreases. This can happen when reactants are in a more disordered state, when the system achieves greater stability, or when the reaction releases heat.
No, an exothermic reaction is not always spontaneous. The spontaneity of a reaction depends on factors such as temperature, pressure, and the entropy change of the system.
If H and S have the same sign, the temperature will determine spontaneity.
An increase in entropy.
S > 0 contributes to spontaneity.
Increasing the temperature makes a reaction spontaneous in some situations.
For a reaction with a positive enthalpy change (ΔH > 0) and a positive entropy change (ΔS > 0), the spontaneity is influenced by temperature through the Gibbs free energy equation: ΔG = ΔH - TΔS. As temperature increases, the TΔS term becomes larger, which can make ΔG more negative, thereby favoring spontaneity. Therefore, at higher temperatures, the reaction is more likely to be spontaneous, while at lower temperatures, it may not be spontaneous.
A high temperature will make it spontaneous.
The Gibbs energy equation helps determine if a chemical reaction will occur spontaneously by considering the change in enthalpy and entropy of the system. If the Gibbs energy is negative, the reaction is spontaneous.
The spontaneity of a reaction can be reversed by changing the conditions such as temperature, pressure, or concentration of reactants, or by adding a catalyst.