The germ cell potential of the female is much smaller than that of the male. The total germ cell potential is predetermined.
-1.95
The total reduction potential of a cell can be calculated by subtracting the standard reduction potential of the oxidation half-reaction from that of the reduction half-reaction. For potassium (K) being reduced, the standard reduction potential is approximately -2.93 V, while for copper (Cu) being oxidized, its reduction potential is +0.34 V. Thus, the total reduction potential of the cell is calculated as: E_cell = E_reduction (Cu) - E_reduction (K) = 0.34 V - (-2.93 V) = 3.27 V. This positive value indicates that the cell reaction is spontaneous.
the standard cell potential is the cell potential at standard conditions (25C , 1 atm , and 1M ) but the cell potential is the cell potential of the cell under a real condition and we use nernst equation . i hope this is useful
-1.95V
The female sex cell in animals is called an ovum or egg.
-1.95
-1.95V
-1.95
The total reduction potential of the cell can be calculated by finding the difference between the reduction potentials of the two half-reactions at standard conditions. The reduction potential for K reduction is -2.92 V and for Cu oxidation is 0.34 V. So, the total reduction potential for the cell would be (-2.92 V) - 0.34 V = -3.26 V.
The total reduction potential of a cell can be calculated by subtracting the standard reduction potential of the oxidation half-reaction from that of the reduction half-reaction. For potassium (K) being reduced, the standard reduction potential is approximately -2.93 V, while for copper (Cu) being oxidized, its reduction potential is +0.34 V. Thus, the total reduction potential of the cell is calculated as: E_cell = E_reduction (Cu) - E_reduction (K) = 0.34 V - (-2.93 V) = 3.27 V. This positive value indicates that the cell reaction is spontaneous.
Half of the individual cell of ovule except female gametophyte cells
The total reduction potential of a cell where potassium is reduced and copper is oxidized can be calculated by finding the difference in the standard reduction potentials of the two half-reactions. The reduction potential for potassium reduction (K⁺ + e⁻ → K) is -2.92 V, and the oxidation potential for copper oxidation (Cu → Cu²⁺ + 2e⁻) is 0.34 V. Therefore, the total reduction potential of the cell is -2.92 V - 0.34 V = -3.26 V.
-3.27V
-3.90v Apex sucks!!
the standard cell potential is the cell potential at standard conditions (25C , 1 atm , and 1M ) but the cell potential is the cell potential of the cell under a real condition and we use nernst equation . i hope this is useful
One can use websites like phonescoop.com to compare cell phones. Also one can compare cell phones on their own by visiting Amazon.com and looking at cell phone reviews.
-1.95V