The entropy of an ideal gas during an isothermal process may change because normally the entropy is a net zero. The change of on isothermal process can produce positive energy.
isenthalpic expansion is through PRDS or control valve where entropy changes. Whereas expansion through a steam turbine is isentropic one and enthalpy drops. isentropic expansion is more efficient process as compared to isenthalic one.
A process where entropy remains the same is an isentropic process. In an isentropic process, there is no net change in the entropy of the system. This typically occurs when there is no heat transfer and the system is adiabatic and reversible.
Another name for a reversible adiabatic process is an isentropic process. This type of process involves no heat exchange with the surroundings and is characterized by constant entropy.
Practically there is no reversible isentropic process but to make the concept easier to be understood, you have to assume the following: * Ideal gas. * no friction losses. * Adiabatic preocess (no heat gain, no heat loss). API 520 part 1 Appendix B assumes that the vapor expansion through a nozzle or a pressure relief valve follows an isentropic path.
Diffusion
isenthalpic expansion is through PRDS or control valve where entropy changes. Whereas expansion through a steam turbine is isentropic one and enthalpy drops. isentropic expansion is more efficient process as compared to isenthalic one.
A process where entropy remains the same is an isentropic process. In an isentropic process, there is no net change in the entropy of the system. This typically occurs when there is no heat transfer and the system is adiabatic and reversible.
Isentropic materials are materials that undergo a reversible, adiabatic process where there is no change in entropy. This means that the material experiences no energy transfer as heat, and its entropy remains constant during the process. Isentropic materials are often used in thermodynamic studies and calculations.
Isentropic enthalpy is a measure of energy in a system that remains constant during an isentropic process, which is a thermodynamic process where there is no change in entropy. In thermodynamic processes, isentropic enthalpy helps to analyze the energy changes that occur without considering any heat transfer or work done.
Since it is a CYCLE, the overall volume change from minimum volume to maximum volume and back must sum to zero, thus the volume expanded must equal the volume compressed. Now, bear in mind that the Carnot Cycle consists of 4 steps:Reversible isothermal expansion of the gas at the "hot" temperature, T1 (isothermal heat addition or absorption).Isentropic (reversible adiabatic) expansion of the gas (isentropic work output).Reversible isothermal compression of the gas at the "cold" temperature, T2. (isothermal heat rejection)Isentropic compression of the gas (isentropic work input).Although when you graph the cycle on a PV diagram, it looks pretty similar, there is no requirement that the volume change in step 1 matches the volume change in step 3, nor that the volume change in step 2 match that in step 4.
Another name for a reversible adiabatic process is an isentropic process. This type of process involves no heat exchange with the surroundings and is characterized by constant entropy.
The relationship between isentropic compression work and the efficiency of a thermodynamic process is that the efficiency of a process increases as the isentropic compression work decreases. Isentropic compression work is the work required to compress a gas without any heat transfer or energy loss, and a lower amount of this work indicates a more efficient process.
In thermodynamics, an isentropic process is a reversible and adiabatic process, meaning there is no heat exchange with the surroundings. An adiabatic process, on the other hand, does not necessarily have to be reversible, but it also involves no heat exchange with the surroundings.
A process takes place from initiation to completion without an increase or decrease in the entropy
A process takes place from initiation to completion without an increase or decrease in the entropy
The isentropic efficiency of a compressor in a refrigeration system is a measure of how well the compressor is able to compress the refrigerant gas without any heat transfer or energy loss. It is expressed as a ratio of the actual work input to the ideal work input in an isentropic process. A higher isentropic efficiency indicates a more efficient compressor.
Practically there is no reversible isentropic process but to make the concept easier to be understood, you have to assume the following: * Ideal gas. * no friction losses. * Adiabatic preocess (no heat gain, no heat loss). API 520 part 1 Appendix B assumes that the vapor expansion through a nozzle or a pressure relief valve follows an isentropic path.