Potentially billions and billions of years.
High mass stars have a faster rate of burning compared to low mass stars. This is because high mass stars have more gravitational pressure in their cores, leading to faster nuclear reactions and higher energy output. This results in a shorter lifespan for high mass stars compared to low mass stars.
No, low mass stars do not become neutron stars. Low mass stars like the Sun end their lives as white dwarfs. Medium mass stars can evolve into neutron stars, but they must first go through the supernova stage to shed their outer layers and leave behind a dense core of neutrons.
High mass stars and low mass stars evolve differently due to their distinct physical characteristics and life cycles. High mass stars undergo rapid fusion processes, leading to a brief lifespan and ending in supernova explosions, often forming neutron stars or black holes. In contrast, low mass stars evolve more slowly, transitioning through stages such as red giants and ending as white dwarfs after shedding their outer layers. These differences in evolution result from variations in temperature, pressure, and nuclear fusion rates within the stars.
Most stars fall within a mass range of approximately 0.1 to 100 times the mass of our Sun. This range includes most of the stars in the universe, from low-mass stars like red dwarfs to high-mass stars like blue giants.
Juvenile star is typically classified as a low mass star, as it is in the early stage of its life cycle. These stars have a mass similar to that of the Sun or less. They are characterized by their long lifespan and relatively stable nature.
No. Low mass stars live hundreds of billions to trillions of years. The highest mass stars may live only a few million years.
There are more low mass stars. this is for two reasons:- # the star forming process generates more low mass stars # High mass stars burn out very quickly and explode as supernovas and thus over time there are less and less of them.
In a newly formed star cluster stars with low masses must greaty out number stars with high masses. High mass stars are rare and low mass stars are extremely common.
They produce light.
High mass stars have a faster rate of burning compared to low mass stars. This is because high mass stars have more gravitational pressure in their cores, leading to faster nuclear reactions and higher energy output. This results in a shorter lifespan for high mass stars compared to low mass stars.
Low and medium sized stars will end up as white dwarfs.
No, low mass stars do not become neutron stars. Low mass stars like the Sun end their lives as white dwarfs. Medium mass stars can evolve into neutron stars, but they must first go through the supernova stage to shed their outer layers and leave behind a dense core of neutrons.
Its initial mass. There are other factors (e.g. whether the star is in orbit around another star) but mass is by far the most important. Generally low mass stars live long unexciting lives, whilst high mass stars live short lives and experience violent stages in their evolution such as supernovae and the swelling into red giants.
High mass adult stars are classified as supergiants or giants, while low mass adult stars are classified as main sequence stars. This classification is based on the mass of the star and where it falls on the Hertzsprung-Russell diagram.
Low and high mass stars are indirectly related; high mass stars evolve faster and have shorter lifespans compared to low mass stars. This is because high mass stars burn through their fuel at a faster rate due to their higher core temperature and pressure.
Low mass stars can last for hundreds of billions of years. Medium mass stars, like our sun will remain on the main sequence for roughly ten billion years. High mass stars, will last for millions of years. By any human measure, a million years is a long time.
Low-mass stars are expected to become white dwarves.