A quadrillion years, I guess. Unlike a radioactive element like uranium, silver is stable and won't decay into something else...like lead, which is usually what happens.
The time used for dealing with nuclear decay is called a half life. Decay of a radioactive atom is something that happens by change, and the atoms of one isotope may be more or less prone to decay than the atoms of another. The way we normally express the rate of decay is to speak of the amount of time it takes for half of the atoms in a sample to decay, which is the same as the time during which any one atom of the sample has a 50% chance of decaying.
The time it takes for a radioactive atom to decay can vary significantly depending on the specific isotope. This is measured in terms of a half-life, which is the time it takes for half of the radioactive atoms in a sample to decay. Half-lives can range from fractions of a second to billions of years.
The half-life of a quantity whose value decreases with time is the interval required for the quantity to decay to half of its initial value. The concept originated in describing how long it takes atoms to undergo radioactive decay but also applies in a wide variety of other situations.Half-lives are very often used to describe quantities undergoing exponential decay-for example radioactive decay-where the half-life is constant over the whole life of the decay, and is a characteristic unit (a natural unit of scale) for the exponential decay equation. However, a half-life can also be defined for non-exponential decay processes, although in these cases the half-life varies throughout the decay process. The converse for exponential growth is the doubling time.
For plutonium (or any other radionuclide) to decay to one eighth of its original activity, it will take 3 half-lives of the material. In one half-life, half is gone. Half will be left. In another half-life, half of the half that was left is gone, and one quarter will be left. In a third half-life, half the one quarter will be left, and that's one eighth of the original. In the case of plutonium, there are a number of isotopes of this highly radioactive stuff. The isotope 239Pu, which is commonly used in nuclear weapons, has a half-life of 2.41 x 104 years. That's 24,100 years. For 239Pu to decay to 1/8 th of its original amount, it will take 3 time the half-life, which is 7.23 x 104 years, or 72,300 years. And yes, that is a long time. A very long time....
It indicates how long it takes for the material to decay.
Atoms can typically endure for billions of years before undergoing decay or transformation.
Atoms can last for varying amounts of time in the context of nuclear and radioactive decay processes. Some atoms can last for billions of years, while others may decay in a fraction of a second. The duration of an atom's existence depends on its specific properties and the type of decay it undergoes.
The time used for dealing with nuclear decay is called a half life. Decay of a radioactive atom is something that happens by change, and the atoms of one isotope may be more or less prone to decay than the atoms of another. The way we normally express the rate of decay is to speak of the amount of time it takes for half of the atoms in a sample to decay, which is the same as the time during which any one atom of the sample has a 50% chance of decaying.
Tritium is an isotope of Hydrogen. It has one proton and two neutrons. It decays into Helium or He. It takes 12 1/2 years for half of the original amount to decay into helium. It does not decay into magnesium. So the answer to your original question is forever.
In any radioactive substance, individual atoms will decay randomly. There is no way to know exactly when any particular atom will decay. On average and in broad terms, however, we can predict how many atoms will decay in any given period of time, and this time varies with the isotope involved. The "half-life" of a radioactive substance is the time that it will take for half of the atoms to decay. Very radioactive isotopes will decay quickly and will have very short half-lives; slightly radioactive isotopes will decay slowly and have long half-lives.
It tells how long it takes for a radioactive isotope to become a daughter element.
The half-life of carbon-14 is 5 730 years.
Silver itself is not radioactive. However, certain isotopes of silver can be radioactive. For example, silver-108 and silver-110 are radioactive isotopes with long half-lives that can undergo radioactive decay. These isotopes are not commonly found in nature.
The half-life of a radioisotope is the time it takes for half of the radioactive nuclei in a sample to decay. It is a characteristic property of each radioisotope and determines the rate at which the isotopes decay.
Isotopes are considered stable if they do not undergo radioactive decay. This can be determined by measuring the isotope's half-life, which is the time it takes for half of the atoms in a sample to decay. If the half-life is long, the isotope is considered stable.
The time it takes for a radioactive atom to decay can vary significantly depending on the specific isotope. This is measured in terms of a half-life, which is the time it takes for half of the radioactive atoms in a sample to decay. Half-lives can range from fractions of a second to billions of years.
they measure how long it takes for half of its unstable molecules to turn to more stable atoms, a half life