To calculate the amperage for a 10kW heater on a 3-phase 220V system, use the formula: Amps = (kW x 1000) / (√3 x Volts). So, Amps = (10 x 1000) / (√3 x 220) = 26.18 amps per phase. Therefore, the total current drawn by the heater is 26.18 amps per phase multiplied by 3, which equals approximately 78.54 amps.
To calculate the amperage drawn by the heater, you can use the formula: Amperage (A) = Power (W) / (Voltage (V) * Square root of 3). In this case, the amperage drawn will be approximately 5.8 Amps.
To calculate the amperage, you can use the formula: Amps = (kW × 1000) / (√3 × Volts). Plugging in the values, we get: Amps = (45 × 1000) / (√3 × 208) ≈ 131.1 amps. So, the hot water heater would draw approximately 131.1 amps.
To calculate the current (in amps) drawn by a 3-phase heater, you can use the formula: [ \text{Current (I)} = \frac{\text{Power (P)}}{\sqrt{3} \times \text{Voltage (V)}} ] For a 10.6 kW heater at 208 volts, the calculation would be: [ I = \frac{10,600 , \text{W}}{\sqrt{3} \times 208 , \text{V}} \approx 27.8 , \text{amps} ] Thus, the heater will draw approximately 27.8 amps.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
To calculate the amperage for a 10kW heater on a 3-phase 220V system, use the formula: Amps = (kW x 1000) / (√3 x Volts). So, Amps = (10 x 1000) / (√3 x 220) = 26.18 amps per phase. Therefore, the total current drawn by the heater is 26.18 amps per phase multiplied by 3, which equals approximately 78.54 amps.
To answer this question the voltage of the heater must be given. I = W/E.
For a single phase circuit, the equation you are looking for is I = W/E. Amps = Watts/Volts.
To calculate the amperage drawn by the heater, you can use the formula: Amperage (A) = Power (W) / (Voltage (V) * Square root of 3). In this case, the amperage drawn will be approximately 5.8 Amps.
50 Amps Single Phase 20 Amps Three Phase
To calculate the amperage, you can use the formula: Amps = (kW × 1000) / (√3 × Volts). Plugging in the values, we get: Amps = (45 × 1000) / (√3 × 208) ≈ 131.1 amps. So, the hot water heater would draw approximately 131.1 amps.
106 amps
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
The heater should have a wattage rating (very few list amps). Calculate the amps using the wattage and voltage. Amps = Watts/Volts(480).
9
In a three-phase 225 amp panelboard, each phase will carry 225 amps. This means that the total current flowing through the panelboard is distributed evenly across the three phases, allowing for a maximum of 225 amps on each phase at a time.
To answer this question the wattage of the block heater must be stated. Amps = Watts/Volts.