A lone pair
In phosphine (PH3), there are three lone pairs and three bonding pairs.
lone pair has more electrons than bond pair
107.5 approximately, as the molecule is based on a tetrahedral shape, which should have 109.5 degree bonds, but the lone pair on the N causes the bond angles to be slightly decreased, by about 2 degrees
The lone pair on an atom exerts repulsion on bonded pairs of electrons, which can distort the bond angles and contribute to the overall shape of the molecule. In some cases, the presence of a lone pair can cause a deviation from the expected bond angles in a molecule, leading to a specific geometry such as trigonal pyramidal or bent.
there is repulsion between lone pair and bond pair for example in water molecule oxygen has lone pair which repells the bond pair due to this bond angle decreases simply ddue to repulsion btween lone pair to lone pair or lone pair to bond pair angle varies
There are 3 bonding pairs of electrons N - H and one lone pair . The repulsion forces between lone pair -lone pair is > lone pair -bond pair > bond pair - bond pair. So the lone pair causes distortion from a perfect tetrahedron
The difference between bonded and lone pair is that a bond pair is composed of two electron that are in a bond whereas lone pair is composed of two electron that is not a bond.
A lone pair of electrons takes up space despite being very small. Lone pairs have a greater repulsive effect than bonding pairs. This is because there are already other forces needing to be taken into consideration with bond pairs. So to summarize: Lone pair-lone pair repulsion > lone pair-bond pair repulsion > bond pair-bond pair repulsion. This makes the molecular geometry different.
A lone pair of electrons takes up space despite being very small. Lone pairs have a greater repulsive effect than bonding pairs. This is because there are already other forces needing to be taken into consideration with bond pairs. So to summarize: Lone pair-lone pair repulsion > lone pair-bond pair repulsion > bond pair-bond pair repulsion. This makes the molecular geometry different.
A lone pair
In phosphine (PH3), there are three lone pairs and three bonding pairs.
A lone pair of electrons takes up space despite being very small. Lone pairs have a greater repulsive effect than bonding pairs. This is because there are already other forces needing to be taken into consideration with bond pairs. So to summarize: Lone pair-lone pair repulsion > lone pair-bond pair repulsion > bond pair-bond pair repulsion. This makes the molecular geometry different.
A lone pair of electrons takes up space despite being very small. Lone pairs have a greater repulsive effect than bonding pairs. This is because there are already other forces needing to be taken into consideration with bond pairs. So to summarize: Lone pair-lone pair repulsion > lone pair-bond pair repulsion > bond pair-bond pair repulsion. This makes the molecular geometry different.
The most idealized bond angle would be in CS2, which has a linear molecular geometry with a bond angle of 180 degrees. PF3, SBr2, and CHCl3 have trigonal pyramidal, angular, and tetrahedral geometries, respectively, which deviate from the ideal angles due to lone pair repulsions.
lone pair has more electrons than bond pair
In bonded pairs of electrons the repulsion of the negative charges is somewhat reduce by the positive charge of the bonded atom's nucleus. Lone pairs do not have this.