answersLogoWhite

0

What else can I help you with?

Related Questions

How many grams of lithium bromide are present in 25.0 mL of a 0.100 M soution?

To calculate the grams of lithium bromide present in the solution, you would first determine the moles of lithium bromide using the formula: moles = Molarity x Volume (L). Once you have the moles, you can convert it to grams using the molar mass of lithium bromide (86.85 g/mol).


The formula for lithium bromide is?

The formula for lithium bromide is LiBr. The compound has a molar mass of 86.845 grams per mole. One of its main uses is as a desiccant.


How many liters of 4 M solution can be made using 100 grams of lithium bromide?

M=#mol solute / Liter of solution #mol solute= mass / molar mass #mol solute= 100 / 87 = 1.15 4= 1.15 / L solution 1.15 / 4 = 0.28 _____________________________________________________________ Since we were only given the (M) and grams of LiBr we had to find the mol of solute. To find the #mol of solute we divided the grams (which were given) over the molar mass of LiBr (87). We then got 1.15 . Now we are able to find the Liter of solution . First we plugged in our given values M= 4 & #mol solute= 1.15 . To find liter of solution we simply dived 1.15 over 4 which equals 0.28. --------------- I suppose that lithium bromide is not so soluble to prepare 4 M solutions in water at 20 0C.


What volume of 0.256 M sodium bromide contains 18.7 grams of bromide?

Need moles sodium bromide first. 18.7 grams NaBr (1 mole NaBr/102.89 grams) = 0.1817 moles NaBr =====================Now, Molarity = moles of solute/Liters of solution 0.256 M NaBr = 0.1817 moles NaBr/X Liters Liters = 0.1817/0.256 = 0.7098 Liters -------------------------( you do sigi figis )


What is the molarity of a solution that contains 1.1 of lithium in 0.5 liters of solution?

If 1,1 is grams the molarity is 0,317.


What volume of 0.256 M sodium bromide contains 18.7 grams of sodium bromide?

From the definition of molarity, one liter of the stated solution contains 0.256 mole of sodium bromide. The gram formula weight of sodium bromide is 102.89; therefore, one liter of the solution contains 0.256 X 102.89 or 26.34 grams. 18.7/26.34 = 0.710, the fraction of a liter that contains 18.7 grams of sodium bromide.


Lithium hydroxide reacts with hydrobromic acid to produce lithium bromide and water If you start with then grams of lithium hydroxide how many grams of lithium bromide will be produced?

Balanced equation: LiOH + HBr ---> LiBr + H₂O Here, we aim to convert the mass of LiOH to mass of LiBr. In this formula, the product (LiBr) takes x, and the reactant (LiOH) takes y. Here's how it goes. (? = coefficient in the balanced equation) mass of x = (mole of y) * (? mol x / ? mol y) * (molar mass of x) mass of LiBr = (10 g / 23.95 g/mol) * (1 mol LiBr / 1 mol LiOH) * (86.85 g/mol LiBr) mass of LiBr = 36.3 g (Answer)


Molarity of 734 grams of lithium sulfate are dissolved to make 2500ml of solution?

To find the molarity of the solution, first calculate the number of moles of lithium sulfate in 734g. Then, divide the moles by the volume of solution in liters to get the molarity. Remember to convert grams to moles using the molar mass of lithium sulfate (Li2SO4).


What is the molarity of 45.8 grams of Nacl in 0.25 litters of solution?

This is an interesting question! We've notified our experts in this category and we'll email you when there is a response.


How many grams of lithium sulfide must be dissolved in 1600 grams of water to make a 2 molal solution?

To make a 2 molal solution, you would need 2 moles of lithium sulfide per 1000g of water. Since you have 1600g of water, you need 2 x (1600 / 1000) = 3.2 moles of lithium sulfide. To find the grams needed, you would multiply the molar mass of lithium sulfide (45.94 + 32.06) by the number of moles needed (3.2) to get 149.12 grams.


What is the molarity of 1.5 liters of an aqueous solution that contains 52 grams of lithium flouride?

The molarity of the solution can be calculated by first finding the moles of lithium fluoride using its molar mass, which is 25.94 g/mol for lithium and 19.00 g/mol for fluorine. Add these together to find the molar mass of lithium fluoride. Then, divide the mass of lithium fluoride by its molar mass to get the moles. Finally, divide the moles by the volume of the solution in liters to get the molarity.


Is there more than 8 grams lithium content in rechargeable AA energizer batteries?

No, a AA lithium battery has about 0.75 grams of Lithium.