2.01x10^22 atoms x 1 mole/6.02x10^23 atoms = 0.0334 moles
To find the number of atoms in 4 moles of lithium, you can use Avogadro's number, which is approximately (6.022 \times 10^{23}) atoms per mole. Therefore, in 4 moles of lithium, the number of atoms is (4 \times 6.022 \times 10^{23} = 2.409 \times 10^{24}) atoms.
To find the number of moles in (1.63 \times 10^{24}) atoms, you can use Avogadro's number, which is approximately (6.022 \times 10^{23}) atoms per mole. Divide the number of atoms by Avogadro's number: [ \text{moles} = \frac{1.63 \times 10^{24}}{6.022 \times 10^{23}} \approx 2.71 \text{ moles}. ] Thus, there are approximately 2.71 moles in (1.63 \times 10^{24}) atoms.
The answer is 0,465 moles.
To find the number of moles of nitrogen in (1.61 \times 10^{24}) atoms, you can use Avogadro's number, which is approximately (6.022 \times 10^{23}) atoms per mole. Calculating the moles: [ \text{Moles of nitrogen} = \frac{1.61 \times 10^{24} \text{ atoms}}{6.022 \times 10^{23} \text{ atoms/mole}} \approx 2.68 \text{ moles} ] Thus, there are approximately 2.68 moles of nitrogen in (1.61 \times 10^{24}) atoms.
To find the number of moles of nickel atoms in (8.00 \times 10^9) Ni atoms, you can use Avogadro's number, which is approximately (6.022 \times 10^{23}) atoms/mole. The calculation is as follows: [ \text{Moles of Ni} = \frac{8.00 \times 10^9 \text{ atoms}}{6.022 \times 10^{23} \text{ atoms/mole}} \approx 1.33 \times 10^{-14} \text{ moles} ] Thus, there are approximately (1.33 \times 10^{-14}) moles of nickel atoms in (8.00 \times 10^9) Ni atoms.
The answer is 0,465 moles.
There are (6.023 \times 10^{23}) atoms in 1 mole of any substance (Avogadro's number). Therefore, there are (1.004 \times 6.023 \times 10^{23} \approx 6.05 \times 10^{23}) atoms in 1.004 moles of bismuth.
There are (~6.022 \times 10^{23}) atoms in one mole of sulfur. Therefore, in 3 moles of sulfur there are (~3 \times 6.022 \times 10^{23} \approx 1.807 \times 10^{24}) atoms of sulfur.
1,638 moles contain 9,864266723766.10e23 atoms.
1.51 X 1015 atoms (1 mole/6.022 X 1023) = 2.51 X 10 -9 moles ===============
20 moles
This is equivalent to 1,4 moles.
There are twice as many oxygen atoms as carbon atoms in carbon dioxide, so 100.0 moles of carbon dioxide would contain 200.0 moles of oxygen atoms.
To find the number of atoms in 3.8 moles of potassium (K), you can use Avogadro's number, which is approximately (6.022 \times 10^{23}) atoms per mole. Multiply the number of moles by Avogadro's number: [ 3.8 , \text{mol} \times 6.022 \times 10^{23} , \text{atoms/mol} \approx 2.28 \times 10^{24} , \text{atoms}. ] Therefore, there are approximately (2.28 \times 10^{24}) atoms in 3.8 moles of potassium.
2,50 moles of silicon contain 15,055352142.10e23 atoms.
1,0.10e9 atoms is equivalent to 0,166.10e-14 moles.
Seventeen moles of hydrogen correspond to 204,75.10e23 atoms.