3 moles of O, so that must be 6 moles of O2
10 moles of nitrogen dioxide are needed to react with 5,0 moles of water.
63 g of water are needed.
To determine the amount of water needed to react with 79.0 CaCN2, you need to use stoichiometry. The balanced chemical equation for the reaction is: CaCN2 + 3H2O -> CaCO3 + 2NH3 From the equation, you can see that 3 moles of water are needed to react with 1 mole of CaCN2. Calculate the moles of CaCN2 in 79.0 grams, then use the mole ratio to determine the moles of water needed. Finally, convert the moles of water to grams using the molar mass of water.
It depends on what you are reacting the sodium with to generate hydrogen gas. The question is incomplete and cannot be answered as it is written
To determine the number of moles of water needed to react with 1.7 moles of Li2O, we can use the balanced chemical equation for the reaction: [ \text{Li}_2\text{O} + 2\text{H}_2\text{O} \rightarrow 2\text{LiOH}. ] From the equation, 1 mole of Li2O reacts with 2 moles of water. Therefore, 1.7 moles of Li2O would require 1.7 x 2 = 3.4 moles of water.
10 moles of nitrogen dioxide are needed to react with 5,0 moles of water.
3.2 moles of water (H2O)
To find the total moles of KNO3 needed, use the formula: moles = molarity x volume (in liters). So, moles = 2.0 mol/L x 1.5 L = 3.0 moles of KNO3. Therefore, 3.0 moles of KNO3 need to be dissolved in water to make 1.5 liters of a 2.0 M solution.
63 g of water are needed.
4 moles of oxygen atoms are present in 4 moles of H2O
The balanced chemical equation for the reaction between sodium and water is: 2 Na + 2 H2O -> 2 NaOH + H2 Since 2 moles of water are needed to react with 2 moles of sodium, 1 mole of water is needed to react with 1 mole of sodium. Therefore, 2.5 moles of sodium will require 2.5 moles of water for the reaction.
To determine the amount of water needed to react with 79.0 CaCN2, you need to use stoichiometry. The balanced chemical equation for the reaction is: CaCN2 + 3H2O -> CaCO3 + 2NH3 From the equation, you can see that 3 moles of water are needed to react with 1 mole of CaCN2. Calculate the moles of CaCN2 in 79.0 grams, then use the mole ratio to determine the moles of water needed. Finally, convert the moles of water to grams using the molar mass of water.
You need to dissolve 180 grams of glucose in water and make it up to 1000ml. this produces 1 M Glucose solution.
It depends on what you are reacting the sodium with to generate hydrogen gas. The question is incomplete and cannot be answered as it is written
To determine the number of moles of water needed to react with 1.7 moles of Li2O, we can use the balanced chemical equation for the reaction: [ \text{Li}_2\text{O} + 2\text{H}_2\text{O} \rightarrow 2\text{LiOH}. ] From the equation, 1 mole of Li2O reacts with 2 moles of water. Therefore, 1.7 moles of Li2O would require 1.7 x 2 = 3.4 moles of water.
8,75 moles of oxygen are needed.
The answer is 6 moles.