2 1/2 g
The half-life of cesium-137 is approximately 30.1 years, not 2 years. After one half-life, 5 G of the original 10 G sample would remain. After two half-lives (about 60.2 years), 2.5 G would remain, and so on. If you meant a hypothetical isotope with a 2-year half-life, after 2 years, 5 G would remain, and after 4 years, 2.5 G would remain.
This would depend on the specific sample and its stability. Without additional information, it is not possible to determine how much of the sample would remain unchanged after two hours.
5g would remain
After each half-life, the number of undecayed nuclei is halved. Starting with 600 nuclei, after one half-life, 300 would remain; after the second half-life, 150 would remain; and after the third half-life, 75 would remain. Thus, after three half-lives, 75 undecayed headsium nuclei would remain in the sample.
To determine how much of a 100 gram sample would remain unchanged after 2 hours, it is necessary to know the specific decay rate or change process of the sample. For example, if the sample undergoes a decay process with a known half-life, you can calculate the remaining amount using the formula for exponential decay. Without this information, it's impossible to provide an exact answer. In general, if no decay occurs, the entire 100 grams would remain unchanged.
2 1/2 g
2 1/2 g
The half-life of cesium-137 is approximately 30.1 years, not 2 years. After one half-life, 5 G of the original 10 G sample would remain. After two half-lives (about 60.2 years), 2.5 G would remain, and so on. If you meant a hypothetical isotope with a 2-year half-life, after 2 years, 5 G would remain, and after 4 years, 2.5 G would remain.
This would depend on the specific sample and its stability. Without additional information, it is not possible to determine how much of the sample would remain unchanged after two hours.
5g would remain
After each half-life, the number of undecayed nuclei is halved. Starting with 600 nuclei, after one half-life, 300 would remain; after the second half-life, 150 would remain; and after the third half-life, 75 would remain. Thus, after three half-lives, 75 undecayed headsium nuclei would remain in the sample.
1mg
Copper-64 (Cu-64) has a half-life of approximately 12.7 hours. After one half-life (12.7 hours), half of the original sample would remain. Therefore, from a 2 mg sample, after 12 hours, approximately 1 mg of Cu-64 would remain, as it has not yet fully completed one full half-life.
To determine how much of a 100 gram sample would remain unchanged after 2 hours, it is necessary to know the specific decay rate or change process of the sample. For example, if the sample undergoes a decay process with a known half-life, you can calculate the remaining amount using the formula for exponential decay. Without this information, it's impossible to provide an exact answer. In general, if no decay occurs, the entire 100 grams would remain unchanged.
.25 mg
The mass is 1,075 g.
0.5 mg