2.5 g 1 mol/18.02 g (-285.83) kJ/mol
To calculate the energy released when freezing 2.5 g of water, we use the heat of fusion for water, which is approximately 334 J/g. Multiplying the mass of water by the heat of fusion, we get: Energy = 2.5 g × 334 J/g = 835 J. Thus, freezing 2.5 g of water releases about 835 joules of energy.
None. When water freezes it _releases_ energy (the heat of fusion, 333.55 kj.kg). To keep it from freezing, simply keep the energy constant. If the ambient temperature is below zero C (32 F) the rate of energy loss will depend on the temperature of the air and the thermal resistance (insulation value) of the water's container, and other factors such as wind speed. In those conditions you must replace the energy lost to prevent the water from freezing. However, the energy needed depends on the rate of loss, not on the amount of water.
No heat (energy) is required to freeze water (from liquid to solid). Freezing RELEASES energy (heat), as it is an exothermic event. If you want to know how much energy is release, you need to know the heat of fusion for water, and then multiply that by the mass of water being frozen.
Melting is the result of enough heat energy being transferred INTO an object to turn it into a liquid. Freezing is the result of enough heat energy being transferred OUT of a liquid to turn it into a solid. Melting and freezing are not as much of a "process" as they are a result. For example: When you put water into the freezer, the heat energy in the warm water is transferred into the colder air, which causes the water to freeze. That process causes the air in the freezer to warm up slighltly. The process of refridgeration then transfers that heat out of the freezer, which makes the air in the freezer nice and cold again.
To prevent water from freezing at 20°F, you should mix in approximately 6-7 ounces of denatured alcohol per gallon of water. Denatured alcohol lowers the freezing point of water by decreasing its freezing temperature.
You need to know the initial temperature.
The amount of energy generated from freezing 2.5g of water can be calculated using the specific heat capacity of water and the heat of fusion for water. The energy released would be equal to the heat of fusion of water (334 J/g) multiplied by the mass of water (2.5g). By multiplying these values, you can determine the total energy released during the freezing process.
To calculate the energy released when freezing 2.5 g of water, we use the heat of fusion for water, which is approximately 334 J/g. Multiplying the mass of water by the heat of fusion, we get: Energy = 2.5 g × 334 J/g = 835 J. Thus, freezing 2.5 g of water releases about 835 joules of energy.
Energy produced by using water can vary depending on the method. Hydroelectric power plants generate electricity by harnessing the energy of flowing water, producing a significant amount of energy. Other methods such as tidal and wave energy also use water to generate power, but in smaller quantities compared to hydroelectric power. Overall, water is a valuable resource for producing renewable energy.
None. When water freezes it _releases_ energy (the heat of fusion, 333.55 kj.kg). To keep it from freezing, simply keep the energy constant. If the ambient temperature is below zero C (32 F) the rate of energy loss will depend on the temperature of the air and the thermal resistance (insulation value) of the water's container, and other factors such as wind speed. In those conditions you must replace the energy lost to prevent the water from freezing. However, the energy needed depends on the rate of loss, not on the amount of water.
They generate as much energy as Becky Crossfield eats in a buffet :P
2.5 g 1 mol/18.02 g (-285.83) kJ/mol
No heat (energy) is required to freeze water (from liquid to solid). Freezing RELEASES energy (heat), as it is an exothermic event. If you want to know how much energy is release, you need to know the heat of fusion for water, and then multiply that by the mass of water being frozen.
130 percent more than wind energy energy
a turbine would be used instead of a water wheel because a turbine does not use as much energy and it uses the wind to generate it.
Hfus of water is 333.55 (333.55j/g)(65.8g)=21947.59J 21947.59/1000= 21.947kJ I think
7 table spoons of salt stops 500ml of water from freezing