Incomplete question
Nuclear fission involves splitting large atomic nuclei into smaller ones, releasing energy. Nuclear fusion involves merging small atomic nuclei together to form larger ones, also releasing energy. Fusion is the process that powers the sun and other stars, while fission is used in nuclear power plants and atomic bombs.
No, a fission reaction is not necessary to trigger a fusion reaction, but for us on earth, it is. In the field of nuclear weapons, a fission bomb is needed to create the heat necessary to set off a fusion weapon. We have to use fission, or, rather, the energy created by that, to initiate the fusion reaction. It might be possible to use a high power source, like a laser, on a small amount of material to get fusion to occur. But we are still experimenting with this in the Tokamak, and it's far from being a done deal. Stars are, in general, massive nuclear fusion reactors. Their constant consumption of fuel powering their high rate of fusion creates a massive amount of energy, and the stars' huge gravity keeps this process from blowing the whole thing apart. No fission is needed to sustain this reaction.
The fission reaction must be possible.
urm well i dont no
nuclear fuelcoolantneutron moderator (if needed)control elementsshieldingmeasurement instrumentationemergency systemssupport structures
The minimum amount of material needed to sustain a nuclear reaction depends on the type of reaction. For example, in a nuclear fission reaction, a critical mass of fissile material is needed to sustain a chain reaction. In a fusion reaction, high temperatures and pressures are needed to overcome the electrostatic repulsion between nuclei.
TNT (trinitrotoluene) is a conventional explosive used to trigger the beginning of a nuclear reaction in some nuclear weapons. When the TNT detonates, it generates the high temperatures and pressures needed to initiate the fission process in the nuclear material, causing a chain reaction to occur.
A nuclear weapon requires enriched uranium or plutonium as the fissile material to sustain a chain reaction and create a nuclear explosion. Additionally, a conventional chemical explosive is needed to trigger the nuclear reaction.
Nuclear fission involves splitting large atomic nuclei into smaller ones, releasing energy. Nuclear fusion involves merging small atomic nuclei together to form larger ones, also releasing energy. Fusion is the process that powers the sun and other stars, while fission is used in nuclear power plants and atomic bombs.
Fission is a nuclear reaction where a heavy atom is split up into lighter elements, thereby producing energy. Fission is commonly used in nuclear power plants, but someday they will use fusion. Fusion is a nuclear reaction where very light elements are fused together under enormous heat and pressure into heavier elements, thereby producing energy. The Sun and all the stars are fusion reactors. Thermonuclear bombs (H-bombs) use fission (an A-bomb) to produce the heat needed for fusion.
No, a fission reaction is not necessary to trigger a fusion reaction, but for us on earth, it is. In the field of nuclear weapons, a fission bomb is needed to create the heat necessary to set off a fusion weapon. We have to use fission, or, rather, the energy created by that, to initiate the fusion reaction. It might be possible to use a high power source, like a laser, on a small amount of material to get fusion to occur. But we are still experimenting with this in the Tokamak, and it's far from being a done deal. Stars are, in general, massive nuclear fusion reactors. Their constant consumption of fuel powering their high rate of fusion creates a massive amount of energy, and the stars' huge gravity keeps this process from blowing the whole thing apart. No fission is needed to sustain this reaction.
Neutrons are the important particles of nuclear chain reactions and the reactions depend on them. The neutrons do not really start the fission, reaction, however, because the neutrons come from fission in the fuel.The material in the fuel, typically a mix of 235U and 238U, undergoes fission spontaneously. When a fission event happens, more neutrons, typically two or three, are emitted. These bounce about from atom to atom, until they cause another atom to undergo fission, releasing more neutrons to increase the rate at which atoms undergo fission.But the neutrons needed for the chain reaction are actually produced by the fuel spontaneously, and these are produce in an ongoing manner with or without critical mass. So it is not a particle that starts the chain reaction; it is the act of putting together a critical mass.
The fission reaction must be possible.
Neutron particle is needed to begin nuclear chain reaction.
The source of energy in almost all nuclear power plants is fission or the splitting of the atom. There are a few experimental fusion power plants, (or the joining of the atoms), but, there are few of them, since the energy needed to produce fusion is extremly high, and only last a few seconds. Around 99.99% of nuclear power plants are fission power plants.
urm well i dont no
To produce nuclear energy, uranium or plutonium fuel is required. Nuclear reactors are needed to initiate and control the nuclear fission process, releasing energy in the form of heat. This heat is then used to generate steam, which drives turbines to produce electricity. Proper safety measures are essential to ensure the safe operation of nuclear power plants.