If two stars have the same absolute magnitude, the one that is closer to Earth will appear brighter in the night sky. This is because brightness as perceived from Earth depends on both the intrinsic luminosity of the star (absolute magnitude) and its distance from us. The farther star, despite having the same intrinsic brightness, will have a dimmer apparent magnitude due to the greater distance light must travel to reach us.
One dimmer star can be closer than a brighter star that is far away. Light flux decreases as the square of the distance. A star that is three times as far away will have to shine nine times brighter than the closer star (absolute magnitude) to appear to have the same magnitude (apparent magnitude). Because apparent magnitude is the brightness of a star, as seen from Earth, whereas absolute magnitude is the brightness of a star as seen from the same distance - about 32.6 light years away.
It is actually absolute magnitude, opposed to apparent magnitude which is how much light stars appear to give off.
I'm not sure exactly what detail you want, but here's a start. Rigel is a triple star system. The main star of the three is a very luminous star. It is a blue supergiant star.
Stars are measured in brilliance called magnitude. The faintest stars visible to the naked eye are mag.6. Brighter ones are mag. 1 or 2, the even brighter stars have negative magnitude. So its like a number line in math: Brighter Fainter -6_-5_-4_-3_-2_-1__0__1_2_3_4_5_6
If they had the same intrinsic brightness, then yes. However stars vary enormously in their intrisic brightness, so Deneb is distant, but one of the brightest stars in the Northern sky, whereas proxima centuri is the closest star to us, but so dim that it cannot be seen without a mid-size telescope.
No, Betelgeuse has a lower absolute magnitude compared to the Sun. Betelgeuse is a red supergiant star with a much larger luminosity, making it appear brighter despite its greater distance from Earth.
A stars brightness depends on two factors; its distance from us and its actual brightness (absolute magnitude). The actual brightness of a star depends on various factors, such as its mass, its temperature and its age.Consider two stars of the same actual brightness (absolute magnitude) - if one of them is much closer, then is will be brighter than the further one. It will appear brighter, even though it would be the same side by side - it can be said to be apparently brighter (higher apparent magnitude) due to its distance.A:They appear bigger and brighter because they really are bigger and brighter, but even if they are not bigger and brighter it could be because they are closer.
A stars brightness depends on two factors; its distance from us and its actual brightness (absolute magnitude). The actual brightness of a star depends on various factors, such as its mass, its temperature and its age.Consider two stars of the same actual brightness (absolute magnitude) - if one of them is much closer, then is will be brighter than the further one. It will appear brighter, even though it would be the same side by side - it can be said to be apparently brighter (higher apparent magnitude) due to its distance.A:They appear bigger and brighter because they really are bigger and brighter, but even if they are not bigger and brighter it could be because they are closer.
One dimmer star can be closer than a brighter star that is far away. Light flux decreases as the square of the distance. A star that is three times as far away will have to shine nine times brighter than the closer star (absolute magnitude) to appear to have the same magnitude (apparent magnitude). Because apparent magnitude is the brightness of a star, as seen from Earth, whereas absolute magnitude is the brightness of a star as seen from the same distance - about 32.6 light years away.
Absolute magnitude refers to a measure of the real brightness of a star. In terms of absolute magnitude, a blue-violet star is classified as bright, while an orange-red star is classified as faint.
It is actually absolute magnitude, opposed to apparent magnitude which is how much light stars appear to give off.
Yes, the star with the higher absolute magnitude will appear dimmer from Earth if it is located farther away. This is because brightness decreases with distance due to the inverse square law of light, meaning that a star will appear dimmer the farther it is from the observer.
The relationship between luminosity and absolute magnitude in stars is that luminosity measures the total amount of energy a star emits, while absolute magnitude measures the brightness of a star as seen from a standard distance. Stars with higher luminosity have lower absolute magnitudes, meaning they appear brighter in the sky.
I'm not sure exactly what detail you want, but here's a start. Rigel is a triple star system. The main star of the three is a very luminous star. It is a blue supergiant star.
Stars are measured in brilliance called magnitude. The faintest stars visible to the naked eye are mag.6. Brighter ones are mag. 1 or 2, the even brighter stars have negative magnitude. So its like a number line in math: Brighter Fainter -6_-5_-4_-3_-2_-1__0__1_2_3_4_5_6
It's because of the relative magnitude of the star's luminosity. If you are looking at a star from Earth that is about 4 light years away, it will appear much brighter than the same kind, type, and age of star that is 8 light years away. Though the absolute magnitude of both of those stars may be the same (absolute magnitude is the brightness of a star at about 36.2 light years away from earth), the relative magnitude is different because of the distance of both stars. It is a combination of their actual brightness, size and distance.
No, absolute magnitude and apparent magnitude are not the same thing. Apparent magnitude is a measure of how bright an object appears from Earth, taking into account its distance and intrinsic brightness. Absolute magnitude, on the other hand, is a measure of how bright an object would appear if it were located at a standard distance of 10 parsecs (32.6 light-years) away from Earth.