No, that electron configuration does not exist. After the 3p orbital fills with electrons, the next lowest energy orbital is 4s. After 4s contains 2 electrons, then 3d can accept electrons, upto 10. The element with this electron configuration is zinc, one of the transitional metals. Although 3d is full, those electrons can be 'valence' electrons and given to non-metals to form ions, such as Zn+2 or Zn+4. So 3d really acts like a 4th shell orbital and will still be quite reactive even when full.
To see just how reactive these electrons are, look at the YouTube videos embedded in this site: http://www.chemicool.com/elements/zinc.html.
Yes, the electron structure of a zinc ion (Zn2+) achieves a pseudo noble gas configuration by losing two electrons to have a full outer shell, similar to a noble gas configuration. This stable electron configuration is in line with the octet rule, making it an example of pseudo noble gas formation.
The pseudo-noble gas configuration for calcium is achieved when it loses two electrons to form a Ca2+ ion. This results in the same electron configuration as argon.
it all depends on the electron configuration if it is positive or negative, you have to look at the transition metals and valence electrons and determine the charge and use the formula n-11s^2 2s^2 2p^6 3s^2 3p^6 3d^10
The pseudo noble-gas electron configuration has the outer three orbitals filled, the s, p and d- s2p6d10 (18 electrons total) and so is fairly stable. Elements that attain this electron configuration are at the right side of the transition metals (d-block). Br-, I-, Se2-
A noble gas electron configuration involves representing an element's electron configuration by using the electron configuration of the nearest noble gas preceding it in the periodic table, followed by the remaining electron configuration for that element. For example, the noble gas electron configuration for sodium (Na) is [Ne] 3s¹, where [Ne] represents the electron configuration of neon leading up to sodium.
Although the formation of an octet is the most stable electron configuration, other electron configurations provide stability. These relatively stable electron arrangements are referred to a pseudo-noble gas configuration. Although the formation of an octet is the most stable electron configuration, other electron configurations provide stability. These relatively stable electron arrangements are referred to a pseudo-noble gas configuration.
Silver (Ag) has 47 electrons. To achieve a pseudo-noble-gas electron configuration, silver would need to lose one electron to achieve a stable electron configuration that resembles a noble gas configuration like argon.
no. it doesn't
Yes, the electron structure of a zinc ion (Zn2+) achieves a pseudo noble gas configuration by losing two electrons to have a full outer shell, similar to a noble gas configuration. This stable electron configuration is in line with the octet rule, making it an example of pseudo noble gas formation.
The pseudo noble-gas electron configuration has the outer three orbitals filled, the s, p and d- s2p6d10 (18 electrons total) and so is fairly stable. Elements that attain this electron configuration are at the right side of the transition metals (d-block). Br-, I-, Se2-
Silver has to give up 1 electron to achieve a pseudo noble gas electron configuration. With its atomic number being 47, silver has an electron configuration of [Kr] 4d^10 5s^1. Giving up its one valence electron from the 5s orbital will result in a stable pseudo noble gas electron configuration similar to argon.
The pseudo-noble gas configuration for calcium is achieved when it loses two electrons to form a Ca2+ ion. This results in the same electron configuration as argon.
The pseudo noble gas electron configuration for cadmium is [Kr] 4d^10 5s^2. Cadmium forms a 2+ cation to achieve a pseudo noble gas electron configuration, where it loses its two 5s electrons and has the electron configuration of [Kr] 4d^10.
Silver (Ag) has 47 electrons. To achieve a pseudo-noble gas electron configuration, silver would need to give up one electron to match the electron configuration of the noble gas, krypton (Kr), in which the outermost energy level is full. This would leave silver with 46 electrons.
it all depends on the electron configuration if it is positive or negative, you have to look at the transition metals and valence electrons and determine the charge and use the formula n-11s^2 2s^2 2p^6 3s^2 3p^6 3d^10
The pseudo noble-gas electron configuration has the outer three orbitals filled, the s, p and d- s2p6d10 (18 electrons total) and so is fairly stable. Elements that attain this electron configuration are at the right side of the transition metals (d-block). Br-, I-, Se2-
The "Noble gas electron configuration," or the condensed electron configuration, for F is [He] 2s2 3p5.