Close, but not exactly. Hydrogen is not formed by nuclear reactions in stars, hydrogen was formed not long after the Big Bang, when the expanding universe had cooled sufficiently that an electron and a proton could combine to form a hydrogen atom. Helium and all the other elements that are heavier than hydrogen, were formed by the process of nuclear fusion, in stars.
Hydrogen is not changed into helium in nuclear fission. In nuclear physics, nuclear fusion is a reaction in which two or more lighter atomic nuclei are forced together and are fused into a heavier nucleus. In the case of the formation of hydrogen into helium, our sun does that in what is called the proton-proton reaction.
The nuclear process that converts helium and hydrogen into heavier elements is nuclear fusion. In this process, the nuclei of lighter elements combine to form the nuclei of heavier elements, releasing large amounts of energy in the process. This is the process that powers stars like our Sun.
nuclear fusion reaction
Hydrogen and helium are the lightest and most abundant elements in the universe. In the core of a massive star undergoing nuclear fusion, hydrogen and helium are fused into heavier elements like carbon, oxygen, and iron. Once the star reaches the stage where it can no longer sustain fusion reactions to produce heavier elements, hydrogen and helium remain as the last elements in its core before it undergoes a supernova explosion.
Hydrogen and helium. The nuclear fires are fueled by converting hydrogen into helium, through nuclear fusion. The core has other substances, but the sun is mostly gases.
Hydrogen is not changed into helium in nuclear fission. In nuclear physics, nuclear fusion is a reaction in which two or more lighter atomic nuclei are forced together and are fused into a heavier nucleus. In the case of the formation of hydrogen into helium, our sun does that in what is called the proton-proton reaction.
Nuclear fusion, in which hydrogen-1 is fused into helium-4.
The nuclear process that converts helium and hydrogen into heavier elements is nuclear fusion. In this process, the nuclei of lighter elements combine to form the nuclei of heavier elements, releasing large amounts of energy in the process. This is the process that powers stars like our Sun.
nuclear fusion reaction
Hydrogen and helium are the lightest and most abundant elements in the universe. In the core of a massive star undergoing nuclear fusion, hydrogen and helium are fused into heavier elements like carbon, oxygen, and iron. Once the star reaches the stage where it can no longer sustain fusion reactions to produce heavier elements, hydrogen and helium remain as the last elements in its core before it undergoes a supernova explosion.
Nuclear fusion. Lighter elements such as hydrogen atoms get fused to produce heavier elements such as helium. While doing so enormous heat is produced.
hydrogen combine to form helium by nuclear fusion reaction
The nuclear reaction taking place inside the sun is called nuclear fusion. This is where hydrogen atoms combine to form helium, releasing a large amount of energy in the process.
nuclear fission
The nuclear reaction that combines hydrogen to form helium and produces most of the sun's energy is called nuclear fusion. In this reaction, hydrogen nuclei (protons) fuse together to form helium nuclei, releasing a large amount of energy in the form of light and heat.
Helium cannot be turned into hydrogen to produce energy. Helium and hydrogen are two different elements with different atomic structures and properties. However, fusion reactions involving hydrogen isotopes such as deuterium and tritium can produce energy in a process known as nuclear fusion.
From hydrogen, isotopes of helium are formed through nuclear reactions.