If you meant to say mass instead of weight, the acceleration of an object is inversely proportional to mass, because F=ma. However for falling objects where acceleration is equal to gravity, the weight is not a variable.
If the force applied to an object is reduced to one third, the acceleration of the object will also reduce by the same factor. This is because acceleration is directly proportional to the force applied according to Newton's second law of motion.
Second law: The acceleration a of a body is parallel and directly proportional to the net force F and inversely proportional to themass m., F = ma.
Newton's Second Law of motion refers to the relationship between force, mass and acceleration. Force is equal to the mass of an object times its acceleration. F=ma or Acceleration of an object is directly proportional to the Force applied to the object, and inversely proportional to the mass of the object. a=F/m
The acceleration (a) of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force (F), and inversely proportional to the mass (m) of the object. or F = ma
False. The acceleration of an object is directly proportional to the net force acting on it. Newton's 2nd Law: F = ma where F is the force, m is the mass, and a is the acceleration. __________________________________________________ The acceleration of a body is "inversely" proportional to its mass.
Weight is the force exerted on an object due to gravity. It is proportional to an object's mass and the acceleration due to gravity. The formula to calculate weight is weight = mass x acceleration due to gravity.
Acceleration is directly proportional to the force applied to an object and inversely proportional to the mass of the object. This means that increasing the force applied will increase the acceleration, while increasing the mass will decrease the acceleration for a given force.
Yes, weight does affect acceleration. In general, objects with greater weight require more force to accelerate compared to lighter objects. This is due to the relationship described by Newton's second law, which states that the acceleration of an object is directly proportional to the force applied and inversely proportional to its mass.
An object will accelerate in the direction of the applied force. The acceleration is directly proportional to the net force applied to the object. The acceleration is inversely proportional to the mass of the object.
Mass is a measure of the amount of matter in an object, while weight is the force exerted on that object due to gravity. The weight of an object is directly proportional to its mass and the acceleration due to gravity, as given by the formula: weight = mass x acceleration due to gravity.
The force of attraction between an object and the earth due to gravity is called weight. It is calculated using the formula: weight = mass x acceleration due to gravity. The weight of an object is proportional to its mass and the acceleration due to gravity.
Weight. The force of weight experienced by an object can change when the acceleration due to gravity changes. Weight is directly proportional to the acceleration due to gravity, so an increase or decrease in gravity will result in a corresponding change in weight.
Newtons 2nd law means that when force is applied on any object an acceleration is produced in the direction of force which is applied on it. The acceleration produced in the object is directly proportional to the force applied on the object i.e. if force increases then acceleration will also increase and the acceleration is inversely proportional to the mass of object i.e. if the mass of the body decreases then acceleration will increase. If force is represented by 'F', acceleration by 'a' and mass by 'm' then a is directly proportional to F a is inversely proportional to m
Weight of an object depends on the objects mass and the acceleration due to gravity... Weight=mxg where m = mass g=acceleration due to gravity on earth, acceleration due to gravity = approx 9.81m/s2
Angular acceleration and linear acceleration are related through the radius of the rotating object. The angular acceleration is directly proportional to the linear acceleration and inversely proportional to the radius of the object. This means that as the linear acceleration increases, the angular acceleration also increases, but decreases as the radius of the object increases.
Yes, that's correct. According to Newton's second law of motion, acceleration is directly proportional to the force acting on an object and inversely proportional to the object's mass. This means that the greater the force applied to an object, the greater its acceleration will be, and the larger the mass of an object, the smaller its acceleration will be for a given force.
The law of acceleration states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. This means that the greater the force applied to an object, the greater its acceleration will be, and the more mass an object has, the smaller its acceleration will be for a given force.