Yes. Say each enzyme molecule can do one reaction at a time. You will have more product with 100 enzymes than with 10 in the same amount of time. The rate (speed) of the reaction is the change in concentration of the product divided by the change in time.
Enzyme will catalyse when the substrate come close enough to interact with enzyme's active site (proximity and orientation). The rate of enzymatic reactions is influenced by the condition such as temperature or pH that favors the chemical environment, and when a co-factor is already bound (not for all enzymes).
Enzyme concentration has no effect on the rate of an enzyme-catalyzed reaction after reaching a saturation point where all enzyme active sites are occupied. At this point, adding more enzyme will not increase the reaction rate further.
The reaction will speed up.
The change in ∆G would not be affected by doubling the amount of enzyme in the reaction. The ∆G value of a reaction represents the intrinsic energy difference between the products and the reactants, and it is not altered by enzyme concentration.
Sand is used in an enzyme rate of reaction lab to provide a stable surface for the enzyme reaction to occur. It helps to maintain a consistent and controlled environment for the reaction by providing a solid base and preventing any unwanted movement or fluctuations. This ultimately allows for more accurate measurements and observations of the enzyme reaction rate.
Enzymes reduce the amount of time required for a reaction. It does this by creating a suitable environment and physically aligning the substrates.
Enzyme will catalyse when the substrate come close enough to interact with enzyme's active site (proximity and orientation). The rate of enzymatic reactions is influenced by the condition such as temperature or pH that favors the chemical environment, and when a co-factor is already bound (not for all enzymes).
No, Vmax remains constant regardless of the amount of enzyme present. Vmax represents the maximum rate of reaction that can be achieved when all enzyme active sites are saturated with substrate. Once all enzyme active sites are filled, increasing the enzyme concentration further will not increase the reaction rate.
Enzyme concentration has no effect on the rate of an enzyme-catalyzed reaction after reaching a saturation point where all enzyme active sites are occupied. At this point, adding more enzyme will not increase the reaction rate further.
The reaction will speed up.
The minimum enzyme concentration needed to start a reaction varies depending on the specific enzyme and reaction conditions. In general, a higher enzyme concentration can lead to a faster reaction rate, but there is no fixed minimum concentration that applies universally. The amount of enzyme required to initiate a reaction is typically determined through experimentation and optimization.
The change in ∆G would not be affected by doubling the amount of enzyme in the reaction. The ∆G value of a reaction represents the intrinsic energy difference between the products and the reactants, and it is not altered by enzyme concentration.
Enzymes lower the amount of Activation Energy needed for a chemical reaction, therefore speeding up the chemical reaction. For an enzyme to do this it needs to be at the correct pH, salinity, and temperature otherwise the enzyme will not be able to work. When an enzyme is in a pH that is not suitable, the enzyme's shape and structure alter and make it unable to speed up a reaction.
Sand is used in an enzyme rate of reaction lab to provide a stable surface for the enzyme reaction to occur. It helps to maintain a consistent and controlled environment for the reaction by providing a solid base and preventing any unwanted movement or fluctuations. This ultimately allows for more accurate measurements and observations of the enzyme reaction rate.
H2SO4 is used to denature the enzyme and stop the reaction instantly. by adding H2SO4,it will prevent further reaction of the enzyme onto the substrate and the rate of enzyme reaction can be measured in the specific time
activation energy
Enzyme reaction rates are influenced by pH because enzymes have an optimal pH at which they function most effectively. Deviation from this optimal pH can denature the enzyme, rendering it less active or inactive. pH affects the enzyme's shape and charge, which in turn affects its ability to bind to the substrate and catalyze the reaction.