No reaction
The chemical reaction is:2 K + I2 = 2 KI
Acetic acid is added in the titration reaction to provide the acidic conditions necessary for the reaction between KI and N-bromosuccinimide to occur effectively. The acidic medium helps to convert KI to iodine, which can then react with N-bromosuccinimide. This reaction is commonly used to determine the vitamin C content in a solution.
Yes, when Barium chloride (BaCl2) and Potassium iodide (KI) are mixed, a reaction will occur. BaCl2 and KI will undergo a double displacement reaction to form Barium iodide (BaI2) and Potassium chloride (KCl).
Potassium iodide (KI) does not react with sodium thiosulfate (Na2S2O3) because the two compounds belong to different chemical families and do not have a significant affinity for each other. KI is a salt of potassium and iodine, while sodium thiosulfate is a salt of sodium and thiosulfate ions. The lack of reactivity between KI and Na2S2O3 is due to their stable chemical structures and the absence of driving forces for a reaction to occur.
In the presence of sulphuric acid (H2SO4), KI produces HI Since is an oxidizing agent, it oxidizes HI (produced in the reaction to I2). As a result, the reaction between alcohol and HI to produce alkyl iodide cannot occur. Therefore, sulphuric acid is not used during the reaction of alcohols with KI. Instead, a non-oxidizing acid such as H3PO4 is used.
The chemical reaction is:2 K + I2 = 2 KI
Acetic acid is added in the titration reaction to provide the acidic conditions necessary for the reaction between KI and N-bromosuccinimide to occur effectively. The acidic medium helps to convert KI to iodine, which can then react with N-bromosuccinimide. This reaction is commonly used to determine the vitamin C content in a solution.
The substance produced in the reaction of chlorine water and KI is potassium iodide (KI), which reacts with chlorine to form iodine. The confirmation of iodine's presence was done by its reaction with starch, producing a blue-black complex.
The balanced equation for the reaction between KI and Cl2 to form KCl and I2 is: 2KI + Cl2 -> 2KCl + I2 This equation is already balanced.
Yes, when Barium chloride (BaCl2) and Potassium iodide (KI) are mixed, a reaction will occur. BaCl2 and KI will undergo a double displacement reaction to form Barium iodide (BaI2) and Potassium chloride (KCl).
The balanced chemical equation for the reaction between sodium chloride (NaCl) and potassium iodide (KI) is: 2NaCl + KI → NaI + KCl. This equation ensures that there is the same number of each type of atom on both sides of the reaction.
The balanced chemical equation for the reaction between HI and KOH is: HI + KOH --> KI + H2O. In this reaction, hydrogen iodide (HI) reacts with potassium hydroxide (KOH) to form potassium iodide (KI) and water (H2O). The equation is balanced in terms of atoms and charge.
a precipitate. motha nacha -.0
Potassium iodide (KI) does not react with sodium thiosulfate (Na2S2O3) because the two compounds belong to different chemical families and do not have a significant affinity for each other. KI is a salt of potassium and iodine, while sodium thiosulfate is a salt of sodium and thiosulfate ions. The lack of reactivity between KI and Na2S2O3 is due to their stable chemical structures and the absence of driving forces for a reaction to occur.
The reaction between ethyl iodide and alcoholic potash (potassium hydroxide dissolved in alcohol) results in the formation of ethyl alcohol, potassium iodide, and potassium ethoxide. The chemical equation for this reaction can be written as: C2H5I + KOH → C2H5OH + KI + KOC2H5
The reaction between potassium iodide (KI) and dilute sulfuric acid (H2SO4) can be represented by the following equation: 2KI + H2SO4 -> 2KHSO4 + HI
When bleach is mixed with potassium iodide, it undergoes a redox reaction. The bleach oxidizes the iodide ions to produce iodine, which can be observed as a brown color. This reaction can be used to test for the presence of bleach in a solution.