The electrons in a conducting wire are loose and can move freely. When the circuit is closed, a potential difference is set up across the terminals. The battery maintains this potential difference. Then the electrons in the wire move towards the positive terminal of the battery. This flow of electrons constitute the electric current.
The wire resistance is proportional to the length of wire divided by its cross-section area. The voltage drop is proportional to the resistance times the current.
The heating effect of a wire is directly proportional to the square of the current passing through it. This relationship is described by Joule's Law, which states that the heat produced is equal to the current squared multiplied by the resistance of the wire and the time for which the current flows.
There is no direct relationship between length and mass.
The SI Base Unit of electric current is the ampere(symbol: A), which is defined in terms of its magnetic effect, as follows: 'that constant current which, when maintained in two straight, parallel, conductors of infinite length and negligible circular cross-sectional area, and placed one metre apart in a vacuum, would produce between them a force equal to 2 x 10-7 newton per metre of length.'
The relationship between the length and width of rectangles with the same area means that if you decrease one dimension, you must increase the other to maintain the same area. This relationship is described by the formula for the area of a rectangle: Area = length x width. Changing the length and width proportionally maintains the overall area constant.
The relationship between current and length of a wire is inversely proportional when the resistance of the wire remains constant. This means that as the length of the wire increases, the current flowing through it decreases, and vice versa. This relationship is described by Ohm's Law, where resistance (R) is directly proportional to length (L) and inversely proportional to current (I).
Electric current, magnetic field intensity, length of the conductor, angle between the electric current and magnetic field
How does the length of a wire affect its resistance in an electric circuit? What is the relationship between the voltage and current in a resistor? How does the number of coils in an electromagnet affect its magnetic strength? What is the effect of changing the type of material in a circuit (e.g. copper vs. aluminum) on the flow of electric current?
Current draw and length.
In simple MOSFET current mirror, the load current does not follow a linear relationship with reference current (ie for short channel MOSFET's multiplying factor due to channel length modulation cannot be neglected). But by cascoding the output resistance can be increased and since output resistance follows an inverse relationship with lambda (channel-length modulation parameter), the multiplying factor due to channel length modulation reduces to one and a linear relationship is obtained between reference and load current.
Mass, length, time, temperature, and electric current.
The resistance vs length graph shows that there is a direct relationship between resistance and length. As the length of the material increases, the resistance also increases.
The relationship between starting length and initial velocity of shortening is typically an inverse relationship. This means that as the starting length increases, the initial velocity of shortening decreases. This relationship is governed by the length-tension relationship of muscle fibers.
The wire resistance is proportional to the length of wire divided by its cross-section area. The voltage drop is proportional to the resistance times the current.
There is no relationship. Knowing the length of one of them doesn't tell you the length of the other one.
the relationship between the deflection of the wire and the ccurrent is when the voltage is 12volt the current become higher.Another AnswerPresumably you are referring to the force on a conductor placed in a magnetic field? In which case, it is equal to the Flux Density of the field (in teslas), the length of the conductor within the field (in metres), and the value of the current passing through the conductor (in amperes).
They are just dating.