Okay, information is received through the dendrites, and then moves on the the cell body. From there, the cell's axon passes the message on to other neurons or to muscles or glands.
An electrical impulse will travel through a neuron.
The message that travels through a neuron is an electrical impulse called an action potential. It is generated when the neuron is stimulated and travels along the neuron's axon, facilitated by the movement of charged ions. This ultimately allows the neuron to communicate with other neurons or target cells.
The nerve impulse typically travels from the sensory neuron to the spinal cord, where it is processed by interneurons, and then to the motor neuron to elicit a response from the effector organ or muscle.
In the body, an electrical impulse travels through the neurons, or nerve cells, to send signals to and from the brain. The Dendrites of the neuron accept the impulse, send it through the soma, down the axon, and to the axon terminal, where it'll be sent to the next neuron, almost instantly.
An impulse travels in one direction across a synapse, from the presynaptic neuron to the postsynaptic neuron. This ensures that the signal transmission in the nervous system is unidirectional.
An electrical impulse will travel through a neuron.
An Impulse
The message that travels through a neuron is an electrical impulse called an action potential. It is generated when the neuron is stimulated and travels along the neuron's axon, facilitated by the movement of charged ions. This ultimately allows the neuron to communicate with other neurons or target cells.
The electrical impulse travels into the dendrites, the "input" of the neuron, and into the soma or "body" where the signal gets processed. From there, the processed signal travels down the axon or "output" and into the dendrites of another neuron.
An Impulse
The nerve impulse typically travels from the sensory neuron to the spinal cord, where it is processed by interneurons, and then to the motor neuron to elicit a response from the effector organ or muscle.
The first part of the neuron to receive an impulse from an adjacent neuron is the dendrites. Dendrites are branch-like structures that extend from the neuron's cell body and are specialized to receive signals from other neurons. When a neurotransmitter is released from the adjacent neuron's axon terminal, it binds to receptors on the dendrites, initiating an electrical impulse that travels through the neuron.
In the body, an electrical impulse travels through the neurons, or nerve cells, to send signals to and from the brain. The Dendrites of the neuron accept the impulse, send it through the soma, down the axon, and to the axon terminal, where it'll be sent to the next neuron, almost instantly.
When an impulse travels to the brain, it is first received by sensory receptors, then sent through the neurons by an electrical current. When the neuron receives the signal from a sensory receptor or from another neuron, the nucleus processes the impulse and then sends it down the axon. When a neuron is resting, the inside of the cell has a negative charge caused by active transport of NA and K molecules. This is called the resting potential. When the impulse hits the axon, the electricity causes NA pumps to open, allowing a flow of positively charged the molecule into the cell, causing the charges to switch. This is called the action potential. As the impulse passes, the K pumps open, restoring the original charge. When the impulse reached the end of the axon, neurotransmitters chemically pass the impulse to the next neuron. ;
Information flows through a neuron in the human brain through a process called synaptic transmission. When a neuron receives a signal, it generates an electrical impulse that travels down its axon. At the end of the axon, the electrical impulse triggers the release of neurotransmitters into the synapse, the gap between neurons. These neurotransmitters bind to receptors on the receiving neuron, causing it to generate its own electrical impulse and continue the flow of information.
A nerve impulse travels toward the actual nucleus itself to pass information.
it is neuron impulse