Difference # 1: Brains are analogue; computers are digital
It's easy to think that neurons are essentially binary, given that they fire an action potential if they reach a certain threshold, and otherwise do not fire. This superficial similarity to digital "1′s and 0′s" belies a wide variety of continuous and non-linear processes that directly influence neuronal processing.
For example, one of the primary mechanisms of information transmission appears to be the rateat which neurons fire - an essentially continuous variable. Similarly, networks of neurons can fire in relative synchrony or in relative disarray; this coherence affects the strength of the signals received by downstream neurons. Finally, inside each and every neuron is a leaky integrator circuit, composed of a variety of ion channels and continuously fluctuating membrane potentials.
Failure to recognize these important subtleties may have contributed to Minksy & Papert's infamous mischaracterization of perceptrons, a neural network without an intermediate layer between input and output. In linear networks, any function computed by a 3-layer network can also be computed by a suitably rearranged 2-layer network. In other words, combinations of multiple linear functions can be modeled precisely by just a single linear function. Since their simple 2-layer networks could not solve many important problems, Minksy & Papert reasoned that that larger networks also could not. In contrast, the computations performed by more realistic (i.e., nonlinear) networks are highly dependent on the number of layers - thus, "perceptrons" grossly underestimate the computational power of neural networks.
Difference # 2: The brain uses content-addressable memory
In computers, information in memory is accessed by polling its precise memory address. This is known as byte-addressable memory. In contrast, the brain uses content-addressable memory, such that information can be accessed in memory through "spreading activation" from closely related concepts. For example, thinking of the word "fox" may automatically spread activation to memories related to other clever animals, fox-hunting horseback riders, or attractive members of the opposite sex.
The end result is that your brain has a kind of "built-in Google," in which just a few cues (key words) are enough to cause a full memory to be retrieved. Of course, similar things can be done in computers, mostly by building massive indices of stored data, which then also need to be stored and searched through for the relevant information (incidentally, this is pretty much what Google does, with a few twists).
Although this may seem like a rather minor difference between computers and brains, it has profound effects on neural computation. For example, a lasting debate in cognitive psychology concerned whether information is lost from memory because of simply decay or because of interference from other information. In retrospect, this debate is partially based on the false asssumption that these two possibilities are dissociable, as they can be in computers. Many are now realizing that this debate represents a false dichotomy.
Difference # 3: The brain is a massively parallel machine; computers are modular and serial
An unfortunate legacy of the brain-computer metaphor is the tendency for cognitive psychologists to seek out modularity in the brain. For example, the idea that computers require memory has lead some to seek for the "memory area," when in fact these distinctions are far more messy. One consequence of this over-simplification is that we are only now learning that "memory" regions (such as the hippocampus) are also important for imagination, therepresentation of novel goals, spatial navigation, and other diverse functions.
Similarly, one could imagine there being a "language module" in the brain, as there might be in computers with natural language processing programs. Cognitive psychologists even claimed to have found this module, based on patients with damage to a region of the brain known as Broca's area. More recent evidence has shown that language too is computed by widely distributed and domain-general neural circuits, and Broca's area may also be involved in other computations (see here for more on this).
Difference # 4: Processing speed is not fixed in the brain; there is no system clock
The speed of neural information processing is subject to a variety of constraints, including the time for electrochemical signals to traverse axons and dendrites, axonal myelination, the diffusion time of neurotransmitters across the synaptic cleft, differences in synaptic efficacy, the coherence of neural firing, the current availability of neurotransmitters, and the prior history of neuronal firing. Although there are individual differences in something psychometricians call "processing speed," this does not reflect a monolithic or unitary construct, and certainly nothing as concrete as the speed of a microprocessor. Instead, psychometric "processing speed" probably indexes a heterogenous combination of all the speed constraints mentioned above.
Similarly, there does not appear to be any central clock in the brain, and there is debate as to how clock-like the brain's time-keeping devices actually are. To use just one example, the cerebellum is often thought to calculate information involving precise timing, as required for delicate motor movements; however, recent evidence suggests that time-keeping in the brain bears more similarity to ripples on a pond than to a standard digital clock.
Difference # 5 - Short-term memory is not like RAM
Although the apparent similarities between RAM and short-term or "working" memory emboldened many early cognitive psychologists, a closer examination reveals strikingly important differences. Although RAM and short-term memory both seem to require power (sustained neuronal firing in the case of short-term memory, and electricity in the case of RAM), short-term memory seems to hold only "pointers" to long term memory whereas RAM holds data that is isomorphic to that being held on the hard disk. (See here for more about "attentional pointers" in short term memory).
Unlike RAM, the capacity limit of short-term memory is not fixed; the capacity of short-term memory seems to fluctuate with differences in "processing speed" (see Difference #4) as well as with expertise and familiarity.
Difference # 6: No hardware/software distinction can be made with respect to the brain or mind
For years it was tempting to imagine that the brain was the hardware on which a "mind program" or "mind software" is executing. This gave rise to a variety of abstract program-like models of cognition, in which the details of how the brain actually executed those programs was considered irrelevant, in the same way that a Java program can accomplish the same function as a C++ program.
Unfortunately, this appealing hardware/software distinction obscures an important fact: the mind emerges directly from the brain, and changes in the mind are always accompanied by changes in the brain. Any abstract information processing account of cognition will always need to specify how neuronal architecture can implement those processes - otherwise, cognitive modeling is grossly underconstrained. Some blame this misunderstanding for the infamous failure of "symbolic AI."
Difference # 7: Synapses are far more complex than electrical logic gates
Another pernicious feature of the brain-computer metaphor is that it seems to suggest that brains might also operate on the basis of electrical signals (action potentials) traveling along individual logical gates. Unfortunately, this is only half true. The signals which are propagated along axons are actually electrochemical in nature, meaning that they travel much more slowly than electrical signals in a computer, and that they can be modulated in myriad ways. For example, signal transmission is dependent not only on the putative "logical gates" of synaptic architecture but also by the presence of a variety of chemicals in the synaptic cleft, the relative distance between synapse and dendrites, and many other factors. This adds to the complexity of the processing taking place at each synapse - and it is therefore profoundly wrong to think that neurons function merely as transistors.
Difference #8: Unlike computers, processing and memory are performed by the same components in the brain
Computers process information from memory using CPUs, and then write the results of that processing back to memory. No such distinction exists in the brain. As neurons process information they are also modifying their synapses - which are themselves the substrate of memory. As a result, retrieval from memory always slightly alters those memories (usually making them stronger, but sometimes making them less accurate - see here for more on this).
Difference # 9: The brain is a self-organizing system
This point follows naturally from the previous point - experience profoundly and directly shapes the nature of neural information processing in a way that simply does not happen in traditional microprocessors. For example, the brain is a self-repairing circuit - something known as "trauma-induced plasticity" kicks in after injury. This can lead to a variety of interesting changes, including some that seem to unlock unused potential in the brain (known as acquired savantism), and others that can result in profound cognitive dysfunction (as is unfortunately far more typical in traumatic brain injury and developmental disorders).
One consequence of failing to recognize this difference has been in the field of neuropsychology, where the cognitive performance of brain-damaged patients is examined to determine the computational function of the damaged region. Unfortunately, because of the poorly-understood nature of trauma-induced plasticity, the logic cannot be so straightforward. Similar problems underlie work on developmental disorders and the emerging field of "cognitive genetics", in which the consequences of neural self-organization are frequently neglected .
Difference # 10: Brains have bodies
This is not as trivial as it might seem: it turns out that the brain takes surprising advantage of the fact that it has a body at its disposal. For example, despite your intuitive feeling that you could close your eyes and know the locations of objects around you, a series of experiments in the field of change blindness has shown that our visual memories are actually quite sparse. In this case, the brain is "offloading" its memory requirements to the environment in which it exists: why bother remembering the location of objects when a quick glance will suffice? A surprising set ofexperiments by Jeremy Wolfe has shown that even after being asked hundreds of times which simple geometrical shapes are displayed on a computer screen, human subjects continue to answer those questions by gaze rather than rote memory. A wide variety of evidence from other domains suggests that we are only beginning to understand the importance of embodiment in information processing.
Bonus Difference: The brain is much, much bigger than any [current] computer
Accurate biological models of the brain would have to include some 225,000,000,000,000,000 (225 million billion) interactions between cell types, neurotransmitters, neuromodulators, axonal branches and dendritic spines, and that doesn't include the influences of dendritic geometry, or the approximately 1 trillion glial cells which may or may not be important for neural information processing. Because the brain is nonlinear, and because it is so much larger than all current computers, it seems likely that it functions in a completely different fashion. (See here for more on this.) The brain-computer metaphor obscures this important, though perhaps obvious, difference in raw computational power.
I'm not sure how to construct an artificial neutral network.
A self-generating neural network, also known as an autoregressive model, is a type of neural network that generates data or predictions by feeding its own output back into the model as input. This allows the network to learn patterns and generate sequences of data dynamically without the need for external input.
A basic neuron in a neural network is a computational unit that takes input values, applies weights to them, sums them up, adds a bias, and then passes the result through an activation function to produce an output. This output is then passed to other neurons or to the network's output layer.
A neural connection refers to the communication pathway between two or more neurons in the brain. It involves the transmission of electrical and chemical signals across synapses, which are junctions that allow neurons to pass information to one another. These connections are essential for coordinating various functions in the brain, including sensory perception, motor control, and cognitive processes.
The primitive types of artificial neurons include perceptrons, sigmoid neurons, and threshold neurons. These neurons serve as the building blocks for artificial neural networks and can be interconnected to perform various computational tasks.
the neural networks need training to operate. the architecture of a neural network is different from the architecture of microprocessor therefore needs to be emulated.
Bob Marley
An artificial neural network is a mathematical model inspired by biological neural networks. One can find more information about this subject online at Learn Artificial Neural Networks, Computer World, and Wikipedia.
A neural network is a method in artificial intelligence that teaches computers to process data in a way that is inspired by the human brain
I'm not sure how to construct an artificial neutral network.
In a neural network, an epoch refers to one complete pass of the entire training dataset through the neural network. During one epoch, the model updates its weights based on the error calculated from the predictions compared to the actual target values. Multiple epochs are typically required to train a neural network effectively.
Advantages and disadvantages of Artificial Neural NetworkAdvantages:· A neural network can perform tasks that a linear program cannot.· When an element of the neural network fails, it can continue without any problem by their parallel nature.· A neural network learns and does not need to be reprogrammed.· It can be implemented in any application and without any problem.Disadvantages:· The neural network needs training to operate.· The architecture of a neural network is different from the architecture of microprocessors therefore needs to be emulated.· Requires high processing time for large neural networks.
A convolutional neural network (CNN) is a specific type of artificial neural network that uses perceptrons, a machine learning unit algorithm, for supervised learning, to analyze data. CNNs apply to image processing, natural language processing and other kinds of cognitive tasks. A convolutional neural network is also known as a ConvNet.
If you are asking about the application of Neural network in Artificial Intelligence and Nanotechnology then let me tell you that it is possible. Infact, a group of researchers from Columbian University are in pursuit of an artificial brain that functions similar to that of a human brain. Neural network is a phenomenon that is present in a human brain and the same is being replicated in case of Artificial Intelligence. Micro processors are used to pass on electrical signals to initiate decision making process, similar to that of a human brain. Some philosophy even suggest the use of same in robotics to improve artificial intelligence and initiate robot decision making.
An artificial neural network is a structure which will attempt to find a relationship i.e. a function between the inputs, and the provided output(s), in order that when the net be provided with unseen inputs, and according with the recorded internal data (named "weights"), will try to find a correct answer for the new inputs. Hidden Markov models, are used for find the states for which a given stochastic process went through. The main difference could be this: In order to use a markov chain, the process must depend only in it´s last state. For use a neural network, you need a lot of past data. After training process, neural networks are capable of predicting next states of the system based only on the last state. In addition, given the ability to measure the prediction error (for example, after actual event, signal or state has happend and was compared to prediction), the neural network is capable of adapting itself and capture online changes in the undergoing process to improve the model of prediction and decrease the estimation error for the next states. Theoretically such approach can eliminate the need in initial training, as the network started from some random model will eventually adapt itself to the actual process it tries to estimate given this feedback error loop and will start to make correct estimations / predictions after a certain amount of steps. In such setup one can assume that neural network can be used when no past data is available at all. In this case neural network build the model of the ongoing process "from scratch" based on the observations in the "online" mode.
The only relationship I can come up with is that they are both networks - a series of nodes connected with links. A neural network, like the one in your brain, has brain cells as the nodes, and synapses as the links. An artificial neural network, which is a tiny crude simulation of how your brain works that runs on a computer, emulates that structure in software. A local area network has computers and routers as the nodes, and various kinds of data transmission lines (such as Ethernet cables) as links. Yet another kind of network is a fishing net - it has knots as nodes, and strings as links. Perhaps a better answer would be: The relationship between a neural network and local area network is the same thing as the relationship between a local area network and a fishing net. HTH, Gdunge
momentum neural network