To calculate the number of nucleotides required to code for a specific polypeptide, you need to know the number of amino acids in the polypeptide. Since each amino acid is coded by a codon made up of three nucleotides, you would need 3 times the number of amino acids to determine the total number of nucleotides required. For a 150 amino acid polypeptide, the number of nucleotides would be 150 (amino acids) * 3 (nucleotides per amino acid) = 450 nucleotides.
The minimum number of nucleotides in an mRNA molecule encoding a protein of 80 amino acids is 243 nucleotides. This is because each amino acid is encoded by a codon, which consists of three nucleotides. Therefore, for 80 amino acids, you would need 80 codons, resulting in 80 x 3 = 240 nucleotides, plus at least one additional nucleotide for a stop codon, totaling 243 nucleotides.
A single mRNA molecule has 3 codons i.e. 1 amino acid. The question is flawed and does not make sense!
there are 20! They are: Alanine Arginine Asparagine Aspartic acid Cysteine Glutamic acid Glutamine Glycine Histidine Isoleucine Leucine Lysine Methionine Phenylalanine Proline Serine Threonine Tryptophan Tyrosine Valine Hope this helps!
The number of codons needed to code for a protein varies depending on the length of the protein. Each amino acid is coded for by a specific sequence of three nucleotides (a codon). Therefore, you would need to divide the total number of nucleotides in the protein's gene sequence by 3 to find the number of codons required.
chickens eat pizza
To calculate the number of nucleotides required to code for a specific polypeptide, you need to know the number of amino acids in the polypeptide. Since each amino acid is coded by a codon made up of three nucleotides, you would need 3 times the number of amino acids to determine the total number of nucleotides required. For a 150 amino acid polypeptide, the number of nucleotides would be 150 (amino acids) * 3 (nucleotides per amino acid) = 450 nucleotides.
Nine nucleotides are needed to specify three amino acids.
Three nucleotides are required for an amino acid. These nucleotides are an amine, carbolic acid, and a side chain specific to the amino acid.
The number of nucleotides in an mRNA is directly related to the number of amino acids in the resulting protein. Since each amino acid is coded for by a sequence of 3 nucleotides (codon), the number of amino acids is determined by dividing the total number of nucleotides (336) by 3. Therefore, a mRNA of 336 nucleotides will translate to a protein with 112 amino acids.
Three.
three. (= 9 nucleotides)
Essentially, yes. mRNA, which is made from nucleotides, have specific codons attached to them which codes for specific types of amino acids, which sort of guides the addition of amino acids to the polypeptide chain.
A minimum of 600 nucleotides is necessary to code for a polypeptide that is 200 amino acids long because each amino acid is coded for by a sequence of three nucleotides in mRNA. This is due to the genetic code being triplet, where every three nucleotides represent one amino acid.
No, a codon is a triplet of mRNA bases that specifies a particular amino acid.
The genetic code
DNA nucleotides 'code' for RNA copies of the DNA strand, but the true 'coding' of nucleotides happen in the ribosome where amino acids are matched to the RNA nucleotides. Nucleotides in DNA are only are present to store genetic data. When a particular gene needs to be used or a protein needs to be made, a RNA copy of the DNA will be made, using the slightly different RNA nucleotides (adenine, uracil, cytosine and guanine). This copy then leaves the nucleus and travels to the ribosome, where the RNA nucleotides are used to assemble amino acids into proteins. Each amino acid matches up to a three-nucleotide sequence.