The main sequence - the region across the middle of the diagram.
The region of the Hertzsprung-Russell diagram with the most stars is the main sequence. This area, which stretches diagonally from the upper left (hot, luminous stars) to the lower right (cool, dim stars), contains about 90% of all stars, including our Sun. Main sequence stars primarily fuse hydrogen into helium in their cores, and this phase constitutes the longest stage in a star's life cycle.
Most stars fall within the main sequence region of the Hertzsprung-Russell diagram. This area stretches diagonally from the upper left (hot, luminous stars) to the lower right (cool, dim stars) and accounts for about 90% of a star's life cycle, where they fuse hydrogen into helium in their cores. The main sequence includes a wide variety of stars, from massive O-type stars to smaller M-type stars.
Red dwarf stars are located in the lower right corner of the H-R diagram, which means they are cool and dim compared to other stars. They are low-mass stars that have a long lifespan and are the most common type of star in the universe.
The location on the Hertzsprung-Russell (H-R) diagram where most stars lie is known as the main sequence. This diagonal band extends from the upper left (hot, luminous stars) to the lower right (cool, dim stars) of the diagram. Main sequence stars, including our Sun, primarily fuse hydrogen into helium in their cores, which is the dominant phase of stellar evolution for the majority of stars.
The "main sequence" is the region (on the HR diagram) for stars which burn hydrogen-1. Once stars use up most of their hydrogen-1 (and have significant amounts of helium-4), they leave the main sequence.
The region of the Hertzsprung-Russell diagram with the most stars is the main sequence. This area, which stretches diagonally from the upper left (hot, luminous stars) to the lower right (cool, dim stars), contains about 90% of all stars, including our Sun. Main sequence stars primarily fuse hydrogen into helium in their cores, and this phase constitutes the longest stage in a star's life cycle.
Several regions of the HR diagram have been given names, although stars can occupy any portion. The brightest stars are called supergiants. Star clusters are rich in stars just off the main sequence called red giants. Main sequence stars are called dwarfs.
stars there called stars
stars there called stars
Red dwarf stars are located in the lower right corner of the H-R diagram, which means they are cool and dim compared to other stars. They are low-mass stars that have a long lifespan and are the most common type of star in the universe.
It's main sequence.
The curve that currently contains most stars on the HR diagram is called the "main sequence". It consists of those stars that fuse hydrogen-1, converting it into helium-4.
In the HR-diagram, a diagram of color vs. luminosity, most stars are concentrated close to one curve, called the "main sequence". It turns out that stars on the main sequence are the stars that mainly get their energy by converting hydrogen into helium.
The "main sequence" is the region (on the HR diagram) for stars which burn hydrogen-1. Once stars use up most of their hydrogen-1 (and have significant amounts of helium-4), they leave the main sequence.
Red dwarf stars are the commonest stars, at least in the region of space around our Sun.
Supergiants are the most massive stars, occupy the top region of Hertzsprung-russell diagram . Supergiants can have 10 to 70 solar masses and luminosity up to hundreds of thousands times the solar luminosity and because of their large masses they have lifespan of few million years and may be less than this value .
In the early 20th century, Danish astrophysicist Ejnar Hertzsprung and American astrophysicist Henry Norris Russell independently developed a graph now known as the Hertzsprung-Russell (H-R) diagram, which plots absolute brightness against spectral type. In this diagram, the brightest stars lie near the top of the diagram and the hottest stars lie to the left. On the H-R diagram, most of the stars, including the Sun, fall along a diagonal line that goes from the upper left to the lower right of the diagram. This line called the main sequence.The great majority of stars neighboring the Sun fall on the lower part of the H-R diagram's main sequence, and relatively few lie on the portion of the main sequence above the Sun. This means that most of the Sun's neighboring stars are both cooler and fainter (in absolute magnitude) than the Sun. A smaller population of brighter but cooler stars known as supergiants occupies the uppermost region of the diagram. Some stars, which are difficult to discover because they are so intrinsically faint, lie near the bottom of the H-R diagram. These faint stars are called white dwarfs.