Directly proportional.
Related Information:
According to the Ideal Gas Law (PV=nRT) if the Pressure P is held constant and the Temperature is increased, the Volume will also increase.
if kelvin temp is halved, the volume is halved if pressure is constant.
pressure
Increased temperature = increased volume of gas The above answer is non-sense. The pressure could increase with temperature and actually yield a smaller volume... here ya go: The ideal gas law is: PV = nRT, where P = pressure, V = volume, n= number of moles, R = ideal gas constant, T = Temperature in K
When pressure is kept constant, a gas causes its volume to decrease when it is cooled. This is described by Charles's Law, which states that at constant pressure, the volume of a gas is directly proportional to its temperature in Kelvin. Therefore, cooling the gas leads to a reduction in its volume.
Charles's Law assumes that the pressure remains constant, the amount of gas stays the same, and the temperature is measured in Kelvin. It states that at constant pressure, the volume of a gas is directly proportional to its temperature.
if kelvin temp is halved, the volume is halved if pressure is constant.
According to Charles's Law, the volume of a gas is directly proportional to its Kelvin temperature when pressure is constant. Therefore, if the Kelvin temperature triples, the gas volume will also triple, so the gas volume will be 9 liters.
Charles' Law says that as pressure on a gas decreases, its volume increases. Charles' Law is an example of an inverse relationship.t It is not Charle's law It is Boyle's law Charles law states at constant volume, pressure is proportional to kelvin temperature And at constant pressure volume is proportional to kelvin temperature But Boyle's law states that at constant temperature pressure is inversely related to volume
According to Boyle's Law, when the volume of a gas is doubled with no change in Kelvin temperature, the pressure of the gas will be halved. This is because pressure and volume are inversely proportional in a gas at constant temperature.
Charles' Law says that as pressure on a gas decreases, its volume increases. Charles' Law is an example of an inverse relationship.t It is not Charle's law It is Boyle's law Charles law states at constant volume, pressure is proportional to kelvin temperature And at constant pressure volume is proportional to kelvin temperature But Boyle's law states that at constant temperature pressure is inversely related to volume
directly proportional to the Kelvin temperature
pressure
60
Gay-Lussac's law relates the pressure of a gas to its temperature, under constant volume and amount of gas. It states that the pressure of a gas is directly proportional to its temperature in kelvin.
Increased temperature = increased volume of gas The above answer is non-sense. The pressure could increase with temperature and actually yield a smaller volume... here ya go: The ideal gas law is: PV = nRT, where P = pressure, V = volume, n= number of moles, R = ideal gas constant, T = Temperature in K
I suppose you mean the formula for the variation in pressure. The simplest expression of this is, at a fixed temperature,and for a given mass of gas, pressure x volume = constant. This is known as Boyle's Law. If the temperature is changing, then we get two relations: 1. If the pressure is fixed, volume = constant x temperature (absolute) 2. If the volume is fixed, pressure = constant x temperature (absolute) These can be combined into the ideal gas equation Pressure x Volume = constant x Temperature (absolute), or PV = RT where R = the molar gas constant. (Absolute temperature means degrees kelvin, where zero is -273 celsius)
Charles's Law assumes that the pressure remains constant, the amount of gas stays the same, and the temperature is measured in Kelvin. It states that at constant pressure, the volume of a gas is directly proportional to its temperature.