The Gibbs free energy change (ΔG) for a reaction is always positive when the reaction is non-spontaneous under the given conditions. This typically occurs at high temperatures for exothermic reactions (where ΔH is negative and ΔS is positive) or when the entropy change (ΔS) is negative while ΔH is positive. In such cases, the term TΔS is not large enough to overcome the positive ΔH, resulting in a positive ΔG.
If the reaction occurs in the gas phase
A positive value of delta G (ΔG) indicates that a reaction is non-spontaneous under standard conditions, meaning it requires an input of energy to proceed. In this case, the products have higher free energy than the reactants, suggesting that the reaction is unfavorable in its current direction. Therefore, the reaction is more likely to occur when coupled with a spontaneous process or under different conditions that favor the formation of products.
A positive value of G0 (standard Gibbs free energy change) indicates that the reaction is non-spontaneous under standard conditions. This means that, at standard temperature and pressure, the reactants are favored over the products, and the reaction will not proceed in the forward direction without the input of energy. In practical terms, it suggests that the reaction is thermodynamically unfavorable.
A positive cell potential indicates that the redox reaction is spontaneous under standard conditions. This means that the reactants have a higher free energy than the products, leading to a favorable reaction that can occur without external energy input. Additionally, it suggests that the reduction half-reaction has a greater tendency to gain electrons compared to the oxidation half-reaction losing them.
When H is positive and S is negative
The spontaneity of a reaction is determined by the sign of the Gibbs free energy (ΔG). If both enthalpy (H) and entropy (S) are positive, the reaction can be spontaneous at high temperatures where the TΔS term outweighs the positive ΔH term, resulting in a negative ΔG. This means the reaction will be spontaneous at elevated temperatures.
If the reaction occurs in the gas phase
Add two positive integers and you ALWAYS have a positive integers. The positive integers are closed under addition.
Law
The reaction will be spontaneous at high temperatures (T) where TΔS > ΔH, according to Gibbs free energy equation, ΔG = ΔH - TΔS. At high enough temperatures, the TΔS term can outweigh the positive ΔH term, leading to a negative ΔG value and a spontaneous reaction.
Yes, a half-cell's standard reduction potential is positive if the reduction reaction is spontaneous under standard conditions.
I don't know but I think it is always 0 or under
law
A positive value of delta G (ΔG) indicates that a reaction is non-spontaneous under standard conditions, meaning it requires an input of energy to proceed. In this case, the products have higher free energy than the reactants, suggesting that the reaction is unfavorable in its current direction. Therefore, the reaction is more likely to occur when coupled with a spontaneous process or under different conditions that favor the formation of products.
Staphylococcus epidermidis is a Gram-positive bacterium, meaning it retains the crystal violet stain in the Gram staining procedure. This results in a purple color under the microscope.
In the reverse-bias condition, the negative terminal of the source is connected to the anode side of the circuit and the positive terminal is connected to the cathode side.