A typical 120 volt diesel engine block heater can pull around 1000-1500 watts, which would translate to approximately 8-12.5 amps. It's important to check the specifications of the specific block heater you are using to get an accurate measurement.
Watts = Amps x Volts for a resistive load like a water heater.
To calculate the amperage for a 240-volt, 1500-watt electric baseboard heater, you can use the formula: Amps = Watts / Volts. For this heater, it would be 1500 watts / 240 volts, which equals 6.25 amps. Therefore, the heater uses approximately 6.25 amps.
The power used by the heater can be calculated using the formula: Power = Voltage x Current. In this case, the power would be 460 volts x 5 amps = 2300 watts.
The amperage of an electric heater depends on its power rating in watts and the voltage it operates on. To determine the amperage, divide the wattage by the voltage (Amperes = Watts / Volts). For example, a 1500 watt electric heater running on 120 volts would use 12.5 amperes (1500 watts / 120 volts = 12.5 A).
There are zero amps in 1000 watts. Watts are the product of amps x volts or I = W/E, watts divided by voltage. As you can see, that if no voltage is stated no amperage can be given. Once you find the voltage of the heater then use the following equation, Amps = Watts/Volts to find the current draw of the 1000 watt heater.
Watts is the amount of power the heater has and amps would be the draw- if it is a 120 volt heater than the amps would be 12.5 amps and it is instantaneous
Watts = Amps x Volts for a resistive load like a water heater.
It uses 1150 watts, or 10 amps.
First you need to find out how many amps the heater draws. Then use this formula: Volts (220) X Amps = Watts Then take: Watts x 3.41214 = Btu/hr
The power used by the heater can be calculated using the formula: Power = Voltage x Current. In this case, the power would be 460 volts x 5 amps = 2300 watts.
The heater should have a wattage rating (very few list amps). Calculate the amps using the wattage and voltage. Amps = Watts/Volts(480).
The amperage of an electric heater depends on its power rating in watts and the voltage it operates on. To determine the amperage, divide the wattage by the voltage (Amperes = Watts / Volts). For example, a 1500 watt electric heater running on 120 volts would use 12.5 amperes (1500 watts / 120 volts = 12.5 A).
Find the block heater and look for the nameplate on it. It will be in watts. Use the following equation to find the amperage that it draws. Amps = Watts/Volts. The voltage to use for the truck will be 12 volts.
Amps and Watts measure different things. An Amp is a measure of electrical current and a Watt is a measure of Power. Which ever device draws the higher amperage will be the one that uses more electricity! Hence the 240 watt heater draw less amps even though it uses more watts: Volts Watts/Electical Current Amps/Power example heater 240 volt draws 2000/1000 watts - but uses 8.3/4.2 amps example heater 120 volt draws 1500/750 watts - but uses 12.5/6.3 amps
There are zero amps in 1000 watts. Watts are the product of amps x volts or I = W/E, watts divided by voltage. As you can see, that if no voltage is stated no amperage can be given. Once you find the voltage of the heater then use the following equation, Amps = Watts/Volts to find the current draw of the 1000 watt heater.
Amps * Volts = Watts So, Watts / Volts = Amps 2000 / 240 = 8.333 Amps You should run the circuit on a two pole 15 Amp breaker, using 14 AWG, 2 conductor (plus ground) wire, just so you have a little safety factor in the circuit size.
To answer this question the wattage of the block heater must be stated. Amps = Watts/Volts.