A typical 120 volt diesel engine block heater can pull around 1000-1500 watts, which would translate to approximately 8-12.5 amps. It's important to check the specifications of the specific block heater you are using to get an accurate measurement.
Watts = Amps x Volts for a resistive load like a water heater.
To find the current in amps that a 750 watt, 120 volt heater draws, you can use the formula: Amps = Watts / Volts. So, 750 watts divided by 120 volts equals 6.25 amps. Therefore, the heater draws approximately 6.25 amps.
To calculate the amperage for a 240-volt, 1500-watt electric baseboard heater, you can use the formula: Amps = Watts / Volts. For this heater, it would be 1500 watts / 240 volts, which equals 6.25 amps. Therefore, the heater uses approximately 6.25 amps.
To find the amperage of a 750-watt heater operating at 120 volts, you can use the formula: Amps = Watts / Volts. Therefore, 750 watts divided by 120 volts equals 6.25 amps. So, a 750-watt heater uses approximately 6.25 amps.
The power used by the heater can be calculated using the formula: Power = Voltage x Current. In this case, the power would be 460 volts x 5 amps = 2300 watts.
Watts is the amount of power the heater has and amps would be the draw- if it is a 120 volt heater than the amps would be 12.5 amps and it is instantaneous
Watts = Amps x Volts for a resistive load like a water heater.
To find the current in amps that a 750 watt, 120 volt heater draws, you can use the formula: Amps = Watts / Volts. So, 750 watts divided by 120 volts equals 6.25 amps. Therefore, the heater draws approximately 6.25 amps.
To calculate the amperage for a 240-volt, 1500-watt electric baseboard heater, you can use the formula: Amps = Watts / Volts. For this heater, it would be 1500 watts / 240 volts, which equals 6.25 amps. Therefore, the heater uses approximately 6.25 amps.
It uses 1150 watts, or 10 amps.
To find the amperage of a 750-watt heater operating at 120 volts, you can use the formula: Amps = Watts / Volts. Therefore, 750 watts divided by 120 volts equals 6.25 amps. So, a 750-watt heater uses approximately 6.25 amps.
First you need to find out how many amps the heater draws. Then use this formula: Volts (220) X Amps = Watts Then take: Watts x 3.41214 = Btu/hr
The power used by the heater can be calculated using the formula: Power = Voltage x Current. In this case, the power would be 460 volts x 5 amps = 2300 watts.
The heater should have a wattage rating (very few list amps). Calculate the amps using the wattage and voltage. Amps = Watts/Volts(480).
The amperage of an electric heater depends on its power rating in watts and the voltage it operates on. To determine the amperage, divide the wattage by the voltage (Amperes = Watts / Volts). For example, a 1500 watt electric heater running on 120 volts would use 12.5 amperes (1500 watts / 120 volts = 12.5 A).
Find the block heater and look for the nameplate on it. It will be in watts. Use the following equation to find the amperage that it draws. Amps = Watts/Volts. The voltage to use for the truck will be 12 volts.
Amps and Watts measure different things. An Amp is a measure of electrical current and a Watt is a measure of Power. Which ever device draws the higher amperage will be the one that uses more electricity! Hence the 240 watt heater draw less amps even though it uses more watts: Volts Watts/Electical Current Amps/Power example heater 240 volt draws 2000/1000 watts - but uses 8.3/4.2 amps example heater 120 volt draws 1500/750 watts - but uses 12.5/6.3 amps