answersLogoWhite

0

Glutamic acid and to a lesser degree aspartic acid. Glycine and GABA are inhibitory.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

Postsynaptic potentials can be excitatory and what else?

Postsynaptic potentials can be inhibitory as well. Inhibitory postsynaptic potentials (IPSPs) hyperpolarize the postsynaptic neuron, making it less likely to generate an action potential.


Where EPSP is produced?

Excitatory postsynaptic potentials (EPSPs) are produced at the postsynaptic membrane of neurons, specifically in response to the binding of neurotransmitters to receptors on that membrane. These neurotransmitters are released from the presynaptic neuron during synaptic transmission. The binding of the neurotransmitters typically leads to the opening of ion channels, allowing positively charged ions (such as sodium) to flow into the postsynaptic cell, resulting in depolarization and the generation of an EPSP.


A neurotransmiter that allows sodium ions to leak into a postsynaptic neuron causes?

A neurotransmitter that allows sodium ions to leak into a postsynaptic neuron causes excitatory postsynaptic potentials. The neurotransmitter that is not synthesized in advance and packaged into synaptic vesicles is nitric oxide.


Neurotransmitters that bind the postsynaptic membrane generally generate a what?

Neurotransmitters that bind to the postsynaptic membrane generally generate a postsynaptic potential, which can be either excitatory (EPSP) or inhibitory (IPSP). EPSPs increase the likelihood of an action potential occurring in the postsynaptic neuron, while IPSPs decrease that likelihood. These potentials result from the opening or closing of ion channels, leading to changes in the membrane potential of the postsynaptic cell.


How are epsps produced?

EPSPs, or excitatory postsynaptic potentials, are produced when neurotransmitters bind to receptors on the postsynaptic neuron's membrane, typically resulting in the opening of ion channels. This allows positively charged ions, such as sodium (Na+), to flow into the neuron, leading to a depolarization of the membrane potential. If the depolarization is sufficient to reach the threshold, it can trigger an action potential, propagating the signal along the neuron. EPSPs are crucial for synaptic transmission and play a key role in neural communication and processing.

Related Questions

Postsynaptic potentials can be excitatory and what else?

Postsynaptic potentials can be inhibitory as well. Inhibitory postsynaptic potentials (IPSPs) hyperpolarize the postsynaptic neuron, making it less likely to generate an action potential.


How is excitatory postsynaptic potential produce?

Excitatory postsynaptic potentials (EPSPs) are produced when neurotransmitters bind to excitatory receptors on the postsynaptic membrane, causing a depolarization of the neuron. This depolarization results in the opening of ion channels that allow positively charged ions, such as sodium and calcium, to enter the neuron, further depolarizing it. The cumulative effect of EPSPs from multiple synapses can reach the threshold for action potential initiation.


Where EPSP is produced?

Excitatory postsynaptic potentials (EPSPs) are produced at the postsynaptic membrane of neurons, specifically in response to the binding of neurotransmitters to receptors on that membrane. These neurotransmitters are released from the presynaptic neuron during synaptic transmission. The binding of the neurotransmitters typically leads to the opening of ion channels, allowing positively charged ions (such as sodium) to flow into the postsynaptic cell, resulting in depolarization and the generation of an EPSP.


A neurotransmiter that allows sodium ions to leak into a postsynaptic neuron causes?

A neurotransmitter that allows sodium ions to leak into a postsynaptic neuron causes excitatory postsynaptic potentials. The neurotransmitter that is not synthesized in advance and packaged into synaptic vesicles is nitric oxide.


If a neurotransmitter depolarizes the postsynaptic membrane it is referred to as?

Excitatory neurotransmitter.


Which membrane potential occurs because of the influx of Na plus through chemically gated channels in the receptive region of a neuron?

The membrane potential that occurs due to the influx of Na+ through chemically gated channels in the receptive region of a neuron is called the excitatory postsynaptic potential (EPSP). This influx of Na+ leads to depolarization of the neuron, bringing it closer to the threshold for generating an action potential. EPSPs can summate to trigger an action potential if they reach the threshold potential.


Are graded potentials the same as local potentials?

Postsynaptic potentials are changes in the membrane potential of the postsynaptic terminal of a chemical synapse. Graded potentials are changes in membrane potential that vary in size, as opposed to being all-or-none, and are not postsynaptic potentials.


When two action potentials arrive simultaneously at two different presynaptic terminals that synapse with the same postsynaptic neuron?

When two action potentials arrive simultaneously at different presynaptic terminals synapsing with the same postsynaptic neuron, the postsynaptic neuron may experience a phenomenon known as spatial summation. This occurs when the excitatory postsynaptic potentials (EPSPs) generated by each terminal combine, potentially reaching the threshold for triggering an action potential in the postsynaptic neuron. If the combined effects are sufficient, the postsynaptic neuron will fire an action potential; otherwise, it will remain at its resting potential. This process enhances the likelihood of neuronal activation in response to multiple inputs.


Neurotransmitters that bind the postsynaptic membrane generally generate a what?

Neurotransmitters that bind to the postsynaptic membrane generally generate a postsynaptic potential, which can be either excitatory (EPSP) or inhibitory (IPSP). EPSPs increase the likelihood of an action potential occurring in the postsynaptic neuron, while IPSPs decrease that likelihood. These potentials result from the opening or closing of ion channels, leading to changes in the membrane potential of the postsynaptic cell.


What ions movement and direction cause epsp?

Excitatory postsynaptic potentials (EPSPs) result from the movement of positively charged ions, typically sodium (Na+) and potassium (K+), into the postsynaptic neuron. This influx of positive charge depolarizes the postsynaptic neuron's membrane potential, making it more likely to fire an action potential.


What happens when neurotransmitters communicate an excitatory message to the postsynaptic neuron?

When neurotransmitters communicate an inhibitory message to the postsynaptic neuron:


How is a receptor potential similar to an excitatory post synaptic potential generated at a synapse?

A receptor potential and an excitatory postsynaptic potential (EPSP) are both graded potentials that result from the opening of ion channels in response to a stimulus. In receptor potentials, sensory receptors respond to external stimuli, leading to depolarization, while EPSPs occur when neurotransmitters bind to receptors on the postsynaptic membrane, allowing positively charged ions to flow in. Both processes can summate, contributing to the generation of action potentials if the depolarization reaches a threshold. Thus, they share mechanisms of synaptic transmission and signal transduction in the nervous system.