These pieces of evidence were crucial for Wegener's theory because they provided tangible support for the idea that continents were once connected and had drifted apart over time.
Alfred Wegener used several lines of evidence to support his theory of continental drift. This included the fit of the continents like a jigsaw puzzle, similarities in rock formations and mountain ranges across different continents, matching fossils on separate continents, and paleoclimatic evidence such as glacial striations in tropical regions. These pieces of evidence led Wegener to propose the theory of continental drift in the early 20th century.
Alfred Wegener used fossil evidence (matching plant and animal species across continents), geological evidence (similar rock formations and mountain ranges on different continents), climate evidence (glacial deposits and ancient climate patterns that suggested continents were once connected), and fit of continents (the way the continents seem to fit together like a puzzle) to support his hypothesis of continental drift.
Lack of evidence
The best places to look for evidence of continental drift are paleontological evidence, such as similar fossils found on different continents that were once connected, and geological evidence, such as matching rock formations and mountain ranges on different continents. These can help support the theory of continental drift proposed by Alfred Wegener in the early 20th century.
Other evidence to support Alfred Wegener's theory of continental drift includes matching geological formations and rock types on different continents, similar fossil collections on continents that are now separated by oceans, and the fit of the continents' coastlines like pieces of a jigsaw puzzle. Additionally, the discovery of mid-ocean ridges and the study of paleomagnetism has further bolstered the theory.
Which type of evidence was NOT used by Alfred Wegener to support his continental drift hypothesis human remains
human remains
Which type of evidence was NOT used by Alfred Wegener to support his continental drift hypothesis human remains
Alfred Wegener used fossil evidence, geological evidence, and paleoclimatic evidence to support his theory of Continental Drift. Fossils of the same species found on different continents, similar rock formations and mountain ranges across continents, and matching ancient climate patterns were key pieces of evidence that he presented.
The Continental Drift theory is a theory because there is no evidence to support it. Alfred Wegener developed the Continental Drift theory in the 1800's.
He used evidence from landform, climate, and fossils to support his theory of the continental drift.
Alfred Wegener used various pieces of evidence to support his theory of continental drift, including the fit of the continents, rock and fossil similarities across continents, glacial evidence, and similar geological features on different continents.
Alfred Wegener used evidence from the fit of continents, distribution of fossils, rock types, and ancient climate data to support his theory of continental drift.
Alfred Wegener used several lines of evidence to support his theory of continental drift, including the jigsaw-like fit of the continents, similarities in rock formations and fossil remains across continents, and the matching geological features along coastlines of different continents, such as mountain ranges and ancient glacial deposits.
he used fossils, glacial indentations, and different types of rock.
Alfred Wegener used several lines of evidence to support his theory of continental drift. This included the fit of the continents like a jigsaw puzzle, similarities in rock formations and mountain ranges across different continents, matching fossils on separate continents, and paleoclimatic evidence such as glacial striations in tropical regions. These pieces of evidence led Wegener to propose the theory of continental drift in the early 20th century.
Alfred Wegener used several pieces of evidence to support his theory of continental drift, including the fit of continents like South America and Africa, similar rock formations and mountain ranges across continents, and the distribution of plants and animals. He also looked at evidence from fossils and ancient climate data to support his hypothesis.