Inert ligands are stable ligands that do not easily dissociate from the metal center, while labile ligands are more reactive and can readily dissociate from the metal center. Inert ligands typically form stable and kinetically inert complexes, while labile ligands can undergo substitution reactions more easily.
CFT splitting
Non inert complexes are coordination complexes that exhibit reactivity with their ligands or the surrounding environment. These complexes can undergo ligand exchange reactions, isomerization, or redox processes due to their dynamic nature. Examples include labile complexes that readily exchange ligands and inert complexes that are stable and do not readily undergo reactions.
Labile components are organic materials in the soil that decompose quickly, such as fresh plant residues. Refractory components are organic materials that decompose slowly, like lignin and humus. The distinction between labile and refractory components is important for understanding nutrient cycling in ecosystems.
Trans-effect in inorganic chemistry is defined as the effect where some ligands are able to influence properties of the ground states where they are trans. It is when some ligands can be seen as trans-directing ligands.
The spectrochemical series ranks ligands based on their ability to produce a strong ligand field in coordination complexes. Strong ligands create a large energy gap between the eg and t2g orbitals, leading to low-spin complexes with paired electrons in the eg orbitals. Ligands at one end of the series, such as CN- and CO, are considered strong field ligands, while ligands at the other end, like F- and H2O, are weak field ligands.
CFT splitting
Non inert complexes are coordination complexes that exhibit reactivity with their ligands or the surrounding environment. These complexes can undergo ligand exchange reactions, isomerization, or redox processes due to their dynamic nature. Examples include labile complexes that readily exchange ligands and inert complexes that are stable and do not readily undergo reactions.
multidentate ligands can be good chelating ligands compare to unidendate multidentate ligands bring better stability to the central metal
Fluid, movable - not fixed
Labile mood refers to rapid and unpredictable changes in one's emotional state. Individuals with labile mood may experience sudden shifts in their mood and emotions without a specific trigger. This can make it challenging for them to regulate their feelings and reactions effectively.
Labile cells are cells that multiply constantly throughout an organisms life. Different types of labile cells are skin cells, gastrointestinal tract cells, and blood cells in bone marrow.
labile
Pyrogens that are destroyed by heat.
Labile components are organic materials in the soil that decompose quickly, such as fresh plant residues. Refractory components are organic materials that decompose slowly, like lignin and humus. The distinction between labile and refractory components is important for understanding nutrient cycling in ecosystems.
The ligand substitution process is determined by the relative ligand strengths and steric hindrances. In the case of copper(II), ammonia ligands are stronger ligands compared to water, leading to preferential substitution of water ligands by ammonia ligands due to thermodynamic factors. Additionally, steric hindrance may limit the number of ligands that can bind around the central copper ion.
Pi acceptor ligands are ligands that can accept electron density from a metal center via their pi orbitals. These ligands typically have pi bonding interactions with the metal, allowing for back-donation of electron density from the metal to the ligand. Pi acceptor ligands are often strong-field ligands that influence the electronic structure and reactivity of metal complexes.
Weak field ligands are ligands that result in a small Δ (delta) value in transition metal complexes, leading to high-spin configurations. These ligands typically have small crystal field splitting energies and weaker interactions with the metal ion, allowing for more unpaired electrons in the d orbitals. Examples of weak field ligands include F-, Cl-, and H2O.