When an action potential arrives at the presynaptic terminal, voltage-gated calcium channels open, allowing calcium ions to enter the cell. The influx of calcium triggers the release of neurotransmitter vesicles from the presynaptic terminal into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic membrane, leading to changes in the postsynaptic cell's membrane potential.
Neurotransmitters are released when an action potential reaches an axon terminal (aka: end foot, synaptic knob, bouton), causing voltage-gated calcium ion gates to open, allowing calcium ions into the axon terminal, which causes vesicles containing the neurotransmitters to fuse to the cell membrane, which creates an opening to release the neurotransmitters into the synapse.
It causes the vesicles (which are in the axon terminal) to move to the cell membrane at the end of the axon terminal, where they merge with the cell membrane, releasing their load of neurotransmitters into the synaptic cleft (gap), where they quickly diffuse to receptors in the post-synapticneuron's dendrites, initiating a graded potential which moves down the dendrites, along the soma,to the axon hillock where it can cause an action potential in that secondneuron.
Neurotransmitters are synthesized inside the neuron's cell body and stored in vesicles at the nerve terminal. When an action potential occurs, the neurotransmitters are released into the synaptic cleft to transmit signals to the next neuron.
The tip of a neuron's axon culminates in several endings call terminal buttons. When an action potential is conducted down the axon, this is where it goes.
Terminal buttons release neurotransmitters, which are chemical messengers that relay signals to nearby neurons across the synaptic gap. The neurotransmitters are stored in vesicles within the terminal buttons and are released in response to an action potential.
When an action potential reaches an axon terminal, it triggers the release of neurotransmitters into the synaptic cleft.
When an action potential reaches the nerve terminal, it triggers the release of neurotransmitters into the synapse.
When an action potential reaches the nerve terminal, it triggers the release of neurotransmitters into the synapse, which then transmit signals to the next neuron or target cell.
When the action potential reaches the axon terminal, it triggers the release of neurotransmitters into the synapse, which then bind to receptors on the neighboring neuron, continuing the signal transmission.
neurotransmitters. These neurotransmitters are released into the synaptic cleft to relay signals to the next neuron in the communication pathway.
Exocytosis
There are several key parts to a neuron: dendrites, which receive input, cell body or soma, where the electrical impulses sum, axon, the structure along which the action potential is propagated, and the terminal buttons which release neurotransmitters into the synapse between two neurons.
When an action potential arrives at the presynaptic terminal, voltage-gated calcium channels open, allowing calcium ions to enter the cell. The influx of calcium triggers the release of neurotransmitter vesicles from the presynaptic terminal into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic membrane, leading to changes in the postsynaptic cell's membrane potential.
An action potential propagates unidirectionally along an axon because of the refractory period, which prevents the neuron from firing in the opposite direction immediately after an action potential is generated. This ensures that the signal travels in one direction, from the cell body to the axon terminal.
voltage-gated calcium channels
action potential propagating down the T tubule