Open ended induction motor - i assume you are talking about split phase induction motor. With these motors old style speed controlling method using external resistors can be used. However this is now obsolete.
This is how an induction motor normally works, hence the name. The supply voltage is connected to the stator winding(s) and a current is induced in the rotor. A synchronous motor, on the other hand, will have current supplied to the rotor through slip rings and brushes. The rotor current is generally supplied as DC though, or else rectified in the rotor.
A single phase induction motor has two sets of coils and a centrifugal start switch. The start winding is in series with the start switch. The start winding provides a rotating magnetic field in one direction enabling the motor to start. The motor can be reversed by reversing the connections of either the start winding or the run winding but not both.
Yes if it's a dc motor with a permanent magnet field, or if it's a 3-phase ac motor. No if it's a single-phase ac motor or a dc motor with a field winding in series or parallel with the armature. <<>> Single phase AC motors can be reversed by using a reversing switch. Reverse either the start winding or the run winding connections but not both.
The direction an induction motor will turn depends upon the direction of the rotating field setup by the winding. Remember in AC the direction of the current reverses itself 120 times every second for a 60 hz system. So no it will not turn in the "direction" of the current.
To shift from a star winding to a delta winding in a three-phase motor, the connections between the windings need to be rearranged. In a star winding, the ends of the windings are connected to a common point (neutral), while in a delta winding, each winding end is connected to the start of the next winding. By physically switching the connections, the motor can be reconfigured from star to delta winding.
A single-phase induction motor has a main winding and a starting winding. When the motor has run up to normal speed the starting winding can be switched out, but for small motors this is not usually worth the trouble.
A single-phase induction motor has a main winding and a starting winding. When the motor has run up to normal speed the starting winding can be switched out, but for small motors this is not usually worth the trouble.
A single-phase induction motor has a main winding and a starting winding. When the motor has run up to normal speed the starting winding can be switched out, but for small motors this is not usually worth the trouble.
If there is an extra winding called the "damper winding" in addition to the field winding.Then the synchronous motor will operate as a squirrel cage induction motor.Whats is a damper winding ?A damper winding is made up of copper bars which are placed in the slots in the pole faces of the rotor.These are short circuited with the help of end rings in a squirrel cage induction motor.
Standard induction motor has a closed squirrel cage rotor, where as open ended induction motor has split phase rotor.
Is there a question here.
Like transformer induction motor has stator winding(Primary winding) and rotor winding(Secondary winding) separated by an airgap.Rotor winding(generally Al bars) are short circuited at the end to produce torque for the rotation.Hence the name short circuited transformer.
To start an induction motor we have to excite field. The excitation is done by connecting the DC supply to the field winding's.
Squirrel cage induction motors.
A single phase induction motor has two sets of coils and a centrifugal start switch. The start winding is in series with the start switch. The start winding provides a rotating magnetic field in one direction enabling the motor to start. The motor can be reversed by reversing the connections of either the start winding or the run winding but not both.
PMDC-Permanent Magnet DC motor is a DC machine where the Permanent Magnets form the stator of the machine instead of conventional Field winding. It works on the same principle of electromagnetic induction.
No.