answersLogoWhite

0

For an atom...

( proton mass * number of protons + neutron mass * number of neutrons + electron mass * number of electrons ) - mass of atom in neutral state = mass deficit

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is the binding energy of a nucleus that has a mass defect of 5.81x10-29?

The mass defect represents the mass converted to binding energy


What is the mass defect of thorium?

The mass defect of thorium refers to the difference between the mass of the individual protons and neutrons in its nucleus and the actual mass of the thorium atom. This mass defect arises because some mass is converted into binding energy that holds the nucleus together, as described by Einstein's equation, E=mc². For thorium-232, which is the most common isotope, the mass defect is approximately 0.180 atomic mass units (u). This binding energy is crucial for the stability of the nucleus.


What is the mass defect of c-14?

The mass defect of Carbon-14 is approximately 0.08 atomic mass units compared to the sum of protons and neutrons in its nucleus, due to the binding energy holding the nucleus together. This small amount of mass is converted into energy according to Einstein's famous equation E=mc^2.


What does mass defect represent?

The Energy required o form a nucleus from its parts


What is the mass defect of neon?

The mass defect of neon refers to the difference between the total mass of its individual protons and neutrons and the actual mass of the neon nucleus. Neon has an atomic mass of approximately 20.18 u, and its most abundant isotope, neon-20, consists of 10 protons and 10 neutrons. The mass defect can be calculated by determining the mass of the individual nucleons and subtracting the mass of the nucleus, which results in a mass defect of about 0.226 u for neon-20. This mass defect is a reflection of the binding energy that holds the nucleus together.

Related Questions

How is nuclear binding energy related to the mass defect?

Nuclear binding energy is the energy required to hold the nucleus together. The mass defect is the difference between the mass of a nucleus and the sum of the masses of its individual protons and neutrons. The mass defect is converted into nuclear binding energy according to Einstein's famous equation, E=mc^2, where E is the energy, m is the mass defect, and c is the speed of light.


What is the binding energy of a nucleus that has a mass defect of 5.81x10-29?

The mass defect represents the mass converted to binding energy


What is the mass defect of lithium-7 Assume the following Atomic number of lithium 3 Atomic mass of lithium 7.016003 atomic mass units. Mass of 1 proton 1.007276 atomic mass units. Mass of 1 neutron 1?

To calculate the mass defect of lithium-7, we use the formula: Mass defect = (mass of protons + mass of neutrons) - mass of lithium-7. Given that lithium-7 has 3 protons and 4 neutrons, the total mass of protons is 3 x 1.007276 = 3.021828 amu, and the total mass of neutrons is 4 x 1 = 4 amu. Therefore, the total mass of protons and neutrons is 3.021828 + 4 = 7.021828 amu. The mass defect is then 7.021828 - 7.016003 = 0.005825 amu.


What is the mass defect of c-14?

The mass defect of Carbon-14 is approximately 0.08 atomic mass units compared to the sum of protons and neutrons in its nucleus, due to the binding energy holding the nucleus together. This small amount of mass is converted into energy according to Einstein's famous equation E=mc^2.


What does mass defect represent?

The Energy required o form a nucleus from its parts


How is the mass defect determined?

The mass of a nucleus is subtracted from the sum of the masses of its individual components.


What is the mass defect?

If you add the exact mass of the protons, neutrons, and electrons in an atom you do not get the exact atomic mass of the isotope. The diference is called the mass defect. The difference between the mass of the atomic nucleus and the sum of the masses of the particles within the nucleus is known as the mass defect.


What is the mass of oxygen 16?

If you really meant to ask "What is the mass defect of oxygen-16," this is how you do it. mass defect = # of protons x mass of one proton + # of neutrons x mass of one neutron - mass of the nucleus The atomic number of oxygen-16 is 8, so there are 8 protons. The mass of one proton is approximately 1.0073 amu. The Atomic Mass of oxygen-16 is 16, so there are 8 neutrons in oxygen-16. (Atomic mass of 16 minus atomic number of 8 = # of neutrons in oxygen-16.) The mass of one neutron is approximately 1.0087 amu. The mass of the nucleus of oxygen is 16. Now substitute the values into the "mass defect" equation: mass defect = 8x1.0073+8x1.0087-16=approximately 0.128 amu.


Which equation explains mass defect?

E=mc2. There is potential energy involved in a chemical reaction, or in a nuclear reaction; in both cases, less potential energy means less mass, because of the equivalence of mass and energy. (Note: In chemical reactions, the mass defect is so tiny that it is usually ignored.)


How does mass defect relate to binding energy in the nuclear?

Mass defect is the difference between the mass of an atomic nucleus and the sum of the masses of its individual protons and neutrons. This lost mass is converted into binding energy, which is the energy required to hold the nucleus together. The greater the mass defect, the greater the binding energy holding the nucleus together.


What is the binding energy of a mole nuclei with a mass defect of 0.00084?

The binding energy of a nucleus can be calculated using the mass defect and the relationship E=mc^2, where E is the binding energy, m is the mass defect, and c is the speed of light. With a mass defect of 0.00084 u, the binding energy would be approximately 1.344 x 10^-11 J per nucleus.


How to calculate the mass defect in a nuclear reaction?

To calculate the mass defect in a nuclear reaction, subtract the total mass of the reactants from the total mass of the products. The difference represents the mass that was converted into energy during the reaction, according to Einstein's equation Emc2.