neurotansmitter
When a neurotransmitter lands on their receptor site, they can either excite of inhibit the receiving cell. To excite a cell, positive sodium ions flow to it, which depolarizes the membrane in a similar way to a nerve impulse. The depolarizing effect spreads through the membrane and only last for 1/3 of a millisecond.
neuroglia (glial cells) - approx 9 glia per 1 neuron
Neurotransmitters can inhibit a postsynaptic neuron by binding to inhibitory receptors, which can open channels that allow negatively charged ions like chloride to enter the neuron, making it more negative and less likely to fire. On the other hand, neurotransmitters can excite a postsynaptic neuron by binding to excitatory receptors, leading to the opening of channels that allow positively charged ions like sodium to enter the neuron, depolarizing it and increasing the likelihood of firing an action potential.
Dendrites are the extensions of a neuron that receive signals from other neurons. They are responsible for transmitting electrical impulses towards the cell body of the neuron.
The axon terminal of a motor neuron releases the neurotransmitter acetylcholine. Acetylcholine is responsible for transmitting signals from the motor neuron to muscle fibers, leading to muscle contractions.
When a neuron is not transmitting a signal, it is at rest.
When a neuron is not transmitting a signal, it is at rest.
Dopamine and Acetyl Cholines
When a neurotransmitter lands on their receptor site, they can either excite of inhibit the receiving cell. To excite a cell, positive sodium ions flow to it, which depolarizes the membrane in a similar way to a nerve impulse. The depolarizing effect spreads through the membrane and only last for 1/3 of a millisecond.
neuroglia (glial cells) - approx 9 glia per 1 neuron
synaptic cleft
Neurotransmitters can inhibit a postsynaptic neuron by binding to inhibitory receptors, which can open channels that allow negatively charged ions like chloride to enter the neuron, making it more negative and less likely to fire. On the other hand, neurotransmitters can excite a postsynaptic neuron by binding to excitatory receptors, leading to the opening of channels that allow positively charged ions like sodium to enter the neuron, depolarizing it and increasing the likelihood of firing an action potential.
Dendrites are the extensions of a neuron that receive signals from other neurons. They are responsible for transmitting electrical impulses towards the cell body of the neuron.
The axon terminal of a motor neuron releases the neurotransmitter acetylcholine. Acetylcholine is responsible for transmitting signals from the motor neuron to muscle fibers, leading to muscle contractions.
The signal to excite a muscle cell involves the release of acetylcholine from the motor neuron into the synaptic cleft at the neuromuscular junction. Acetylcholine diffuses across the synaptic cleft and binds to receptors on the muscle cell membrane, leading to depolarization and muscle contraction. This process is crucial for transmitting signals from the nervous system to the muscle for movement.
Neurotransmitters are released from the axon terminal of a neuron into the synaptic cleft, which is the small gap between the axon terminal and the dendrite of a neighboring neuron. neurotransmitters then bind to receptors on the receiving neuron, transmitting the signal.
At a synapse, one neuron sends signals to another neuron through the release of chemicals called neurotransmitters. These neurotransmitters travel across the synapse and bind to receptors on the receiving neuron, which can either excite or inhibit the next neuron's activity. This communication between neurons plays a crucial role in transmitting information throughout the nervous system.