No, the celestial equator does not always pass directly overhead. The position of the celestial equator in the sky is determined by the observer's latitude on Earth. If the observer is located at the equator, the celestial equator will pass directly overhead. However, for observers at different latitudes, the celestial equator will appear at an angle to the horizon.
moves from east-to-west relative to the horizon
The altitude at which the celestial equator intersects your local meridian is the complementof your latitude, i.e. the difference between your latitude and 90 degrees.On the equator: Your latitude is zero. (90 - 0) = 90. Celestial equator passes overhead.At the pole: Your latitude is 90. (90 - 90) = 0. Celestial equator coincides with the horizon.In New Orleans, Louisiana, or Durban, South Africa: Your latitude is 30. (90 - 30) = 60.Celestial equator intersects local meridian at 60 degrees above the horizon.
Celestial Equator
A star at the celestial equator will move 15 degrees in altitude per hour, and 15 arcseconds in 1 second of time. This is because the celestial equator intersects the celestial sphere at 90 degrees from the north and south celestial poles, so the stars appear to move in circles around the celestial poles.
No, the celestial equator does not always pass directly overhead. The position of the celestial equator in the sky is determined by the observer's latitude on Earth. If the observer is located at the equator, the celestial equator will pass directly overhead. However, for observers at different latitudes, the celestial equator will appear at an angle to the horizon.
yes
The celestial equator is an imaginary line in the sky that represents the projection of Earth's equator onto the celestial sphere. It divides the sky into northern and southern hemispheres. The horizon, on the other hand, is the line where the sky meets the Earth's surface when viewed from a specific location, forming the boundary between the visible sky and the ground.
This is true. The celestial equator ... the line of zero declination ... crosses the horizon due east and due west. However, the ecliptic ... the apparent path of the sun through the stars ... is inclined to the celestial equator, and can hit the horizon anywhere within 23.5 degrees north or south of the east-west directions, depending on the time of day and day of the year.
Yes. For any point on Earth that is north of the equator, the north celestial pole is above the horizon.
At the equator, the celestial north pole would be north, just at the horizon. In the southern hemisphere, for instance in Australia, the north celestial pole would be north, and as many degrees BELOW the horizon as your latitude. For instance, if you are 10 degrees south of the equator, the celestial north pole would be 10 degrees below the equator.On the other hand, for people in the southern hemisphere, the celestial SOUTH pole would be ABOVE the horizon; this same pole is below the horizon for anybody in the northern hemisphere.
If you are at the equator, the Earth's celestial pole would be at the northern horizon. However, because of atmospheric haze, you would not be able to see Polaris. Below about 5 degrees north, Polaris is not visible.
moves from east-to-west relative to the horizon
The altitude at which the celestial equator intersects your local meridian is the complementof your latitude, i.e. the difference between your latitude and 90 degrees.On the equator: Your latitude is zero. (90 - 0) = 90. Celestial equator passes overhead.At the pole: Your latitude is 90. (90 - 90) = 0. Celestial equator coincides with the horizon.In New Orleans, Louisiana, or Durban, South Africa: Your latitude is 30. (90 - 30) = 60.Celestial equator intersects local meridian at 60 degrees above the horizon.
celestial equator
Celestial Equator
A star at the celestial equator will move 15 degrees in altitude per hour, and 15 arcseconds in 1 second of time. This is because the celestial equator intersects the celestial sphere at 90 degrees from the north and south celestial poles, so the stars appear to move in circles around the celestial poles.