That simply means this:
That the enzymes natural reaction to the concentration of the of the substrate (based on its chemical makeup) will react at .4 slygometers. This is based on the Scale of Enzyme dependency on the substrates, again "natural" reaction to the enzymes reaction on itself. Never let it fool you that 1/8th of a slygometer is equivalent to a Decominuter on the Enzyme Friction Scale. This is a common misconception and more so just a blatant misunderstanding of the rudimentary basis of the scale itself.
For those of you who don't know the scale conversions they are as follow:
Slygometer Ct. Decominuter Value
.4 .114
.8 .228 * and so on.
Also please wear gloves when marrying any of these chemicals if the Decominuter reads above .14. The reason is, is that the chemical begins to decompose and speed up the half life of itself based on the Degeneration theory, this can cause a devastatingly harsh burn on your knuckle or finger pad. Believe me it hurts bad, there is a procedure to stop the burn from sinking to the bone called Micro-Magnesis, highly expensive if your lucky enough to bump into the Doctor Who holds qualification to do so.
Depends on how much substrate the enzyme can process. Most enzymes can process more than one molecule of substrate without denaturing or becoming unusable. However, in the terms of your question. More substrate is better. Too many enzymes would mean the reaction would be cut short, because they would all react the substrate at once. So for a prolonged, efficient reaction more substrate would be proper.
Vmax, or maximum velocity, refers to the maximum rate at which an enzyme can catalyze a reaction when fully saturated with substrate. In the presence of a competitive inhibitor, Vmax remains unchanged because the inhibitor does not affect the enzyme's ability to catalyze the reaction at high substrate concentrations; it only increases the apparent Km. However, for non-competitive inhibitors, Vmax is reduced because the inhibitor affects the enzyme's function regardless of substrate concentration. Thus, the specific effect on Vmax depends on the type of inhibitor present.
The molecule upon which an enzyme acts is called the substrate.
To find out how enzyme concentration affects the activity of the enzyme you must:vary the concentration of the enzyme, by preparing different concentrations (keeping the volume of solution the same)keep the temperature, substrate concentration and pH constantmeasure the activity of the enzyme at each concentrationHow the enzyme activity is measured will depend on the specific enzyme involved.You need to have plenty of substrate (excess substrate) so it doesn't run out during the experiment.In this type of experiment, the enzyme activity is the dependent variable, the temperature, pH and substrate concentration are control variables and the enzyme concentration is the independent variable.
The reagent needed to complete a reaction depends on the specific reaction being carried out. It could be a catalyst, solvent, substrate, or a specific chemical compound required for the reaction to proceed successfully. Consulting the reaction mechanism or the experimental protocol would help identify the necessary reagents.
The rate of a reaction is calculated using the concentrations of reactants.
Depends on how much substrate the enzyme can process. Most enzymes can process more than one molecule of substrate without denaturing or becoming unusable. However, in the terms of your question. More substrate is better. Too many enzymes would mean the reaction would be cut short, because they would all react the substrate at once. So for a prolonged, efficient reaction more substrate would be proper.
Vmax, or maximum velocity, refers to the maximum rate at which an enzyme can catalyze a reaction when fully saturated with substrate. In the presence of a competitive inhibitor, Vmax remains unchanged because the inhibitor does not affect the enzyme's ability to catalyze the reaction at high substrate concentrations; it only increases the apparent Km. However, for non-competitive inhibitors, Vmax is reduced because the inhibitor affects the enzyme's function regardless of substrate concentration. Thus, the specific effect on Vmax depends on the type of inhibitor present.
The molecule upon which an enzyme acts is called the substrate.
To find out how enzyme concentration affects the activity of the enzyme you must:vary the concentration of the enzyme, by preparing different concentrations (keeping the volume of solution the same)keep the temperature, substrate concentration and pH constantmeasure the activity of the enzyme at each concentrationHow the enzyme activity is measured will depend on the specific enzyme involved.You need to have plenty of substrate (excess substrate) so it doesn't run out during the experiment.In this type of experiment, the enzyme activity is the dependent variable, the temperature, pH and substrate concentration are control variables and the enzyme concentration is the independent variable.
Depends on which enzyme and which substrate, but it goes like this with any of them. Let's take amylum (starch, the substrate) and amylase (saliva, the enzyme). A enzyme binds itself to a substrate, and forms a enzyme substrate complex. The catalyzing powers of the enzyme makes the vulnerable connections in the amylum weak to make it break, which creates product(s) out of the amylum.
Based on Michaelis-Menten enzyme kinetics, the initial rate of reaction, vi, is dependent on maximum rate Vmax, substrate concentration [S], and the enzyme's Michaelis constant Km, which represents the the tendency of the substrate/enzyme complex to dissociate. The dependence on enzyme concentration is factored into the maximum rate. The equation to describe this is: vi = Vmax([S]/(Km+[S])) Follow the link below for details.
Without knowing the enzyme you are interested in, it is hard to give an exact answer. It all depends on the amount of the substrate, temperature, the resultant product, whether either is involved in a chain reaction or a simple reaction and if there is a co-enzyme involved. See the link below for more information on the reaction:
The reagent needed to complete a reaction depends on the specific reaction being carried out. It could be a catalyst, solvent, substrate, or a specific chemical compound required for the reaction to proceed successfully. Consulting the reaction mechanism or the experimental protocol would help identify the necessary reagents.
An enzyme acts to speed up chemical reactions by lowering the activation energy required for the reaction to occur. It does this by binding to specific substrates and facilitating the conversion of reactants into products. Enzymes are specific in their function, often catalyzing only one type of reaction.
It depends on what type of isomerization is occurring; configurational or stereoisomerization. Use of equilibrium concentrations and/or catalysis concentration strategies would work.
The number of moles of catalyst depends on the reaction under consideration. Compared to the substrate, about 10-2 to 10-6 times of the catalyst can be used. The lower the amount of the catalyst, the more effective it is.