For an action potential to transmit it's dependent on three major factors. 1. Size of action potential - greater size and rate of depolarization greater the action potential 2. Cell diameter- greater diameter, greater potential think of water pipes, wider pipes potentially carry more water 3. Myelination. For the idiot that said friction, in the world of neuroscience in which this question was posted under, friction is not the right answer. You are not physically moving something. It's all about conductance, read the right chapter in physics. Myelination reduces current leaks allowing the majority of conductance to reach the node. Thus myelination increases speed and strength of transmissions. Velocity is least dependent on anything other than these three. I hope that answers your question. However, it was kind of vague so, working bakeries from the question seemed the best way to go
Schwann cells enhance the velocity of electrical transmission of an action potential along an axon in the peripheral nervous system by forming a myelin sheath around the axon. This myelin sheath insulates the axon, allowing for faster conduction of the action potential through a process known as saltatory conduction.
Action potential
The regeneration of action potential is called "propagation." It involves the transmission of the action potential along the length of the neuron's axon.
The myelin sheath, which is made of fatty tissue wrapped around the axon, helps to speed up the transmission of the action potential by insulating the axon and allowing the action potential to jump between the nodes of Ranvier. This process is known as saltatory conduction and helps to increase the speed of signal transmission in neurons.
An action potential does not have a conduction velocity. Rather, it makes sense to measure the conduction velocity of nerves or nerve cells and this is usually done in metres per second (m/s.). An action potential is characterised as "an all or none response". This means you cannot alter the characteristics of an action potential in a given nerve cell. If you get a nerve cell and manage to get it to threshold, produce and measure an action potential 1000 times or more at the exact same point on the cell, the action potential you measure will not change in timing or amplitude. Information travels down a nerve cell through action potentials. But it is not one action potential that travels the whole length of the axon. Instead what happens is that one action potential causes the next bit of the nerve cell to reach threshold and therefore creates an entirely new action potential. So you actually need multiple action potentials to happen along a nerve cell to send information down it. We call this "propagation of action potentials" since each action potential produces a new one. More properly, it is referred to as "saltatory action potential conduction". Conduction velocity is basically a measure of how quickly we can produce a series of action potentials to travel the distance of the nerve cell axon. Since action potentials only happen at each "Node of Ranvier", then the longer the distance between each node (internodal distance), the faster the conduction velocity of a nerve cell. Since the internodal distance is positively correlated with myelin thickness, more thickly myelinated nerve cells have faster conduction velocities. The thickest and fastest nerve cells are motor neurones and Ia fibres from muscle spindles with a diameter of 12-20 micrometres and a conduction velocity of 70-120 m/s. The thinnest/slowest are fibres used to convey slow pain (<1.5 micrometres and 0.5-2 m/s).
Oligodendrocyte
Schwann cells enhance the velocity of electrical transmission of an action potential along an axon in the peripheral nervous system by forming a myelin sheath around the axon. This myelin sheath insulates the axon, allowing for faster conduction of the action potential through a process known as saltatory conduction.
Action potential
The structure in the neuron that accelerates the transmission of the action potential is called the myelin sheath.
The regeneration of action potential is called "propagation." It involves the transmission of the action potential along the length of the neuron's axon.
The myelin sheath, which is made of fatty tissue wrapped around the axon, helps to speed up the transmission of the action potential by insulating the axon and allowing the action potential to jump between the nodes of Ranvier. This process is known as saltatory conduction and helps to increase the speed of signal transmission in neurons.
a small myelinated axon
Action potential
An action potential does not have a conduction velocity. Rather, it makes sense to measure the conduction velocity of nerves or nerve cells and this is usually done in metres per second (m/s.). An action potential is characterised as "an all or none response". This means you cannot alter the characteristics of an action potential in a given nerve cell. If you get a nerve cell and manage to get it to threshold, produce and measure an action potential 1000 times or more at the exact same point on the cell, the action potential you measure will not change in timing or amplitude. Information travels down a nerve cell through action potentials. But it is not one action potential that travels the whole length of the axon. Instead what happens is that one action potential causes the next bit of the nerve cell to reach threshold and therefore creates an entirely new action potential. So you actually need multiple action potentials to happen along a nerve cell to send information down it. We call this "propagation of action potentials" since each action potential produces a new one. More properly, it is referred to as "saltatory action potential conduction". Conduction velocity is basically a measure of how quickly we can produce a series of action potentials to travel the distance of the nerve cell axon. Since action potentials only happen at each "Node of Ranvier", then the longer the distance between each node (internodal distance), the faster the conduction velocity of a nerve cell. Since the internodal distance is positively correlated with myelin thickness, more thickly myelinated nerve cells have faster conduction velocities. The thickest and fastest nerve cells are motor neurones and Ia fibres from muscle spindles with a diameter of 12-20 micrometres and a conduction velocity of 70-120 m/s. The thinnest/slowest are fibres used to convey slow pain (<1.5 micrometres and 0.5-2 m/s).
During an action potential in a neuron, there is a rapid change in electrical charge across the cell membrane. This change allows for the transmission of signals along the neuron.
When the action potential reaches the axon terminal, it triggers the release of neurotransmitters into the synapse, which then bind to receptors on the neighboring neuron, continuing the signal transmission.
During an action potential, the neuron's electrical charge rapidly changes from negative to positive, allowing for the transmission of signals along the neuron.